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Automated assessment of speech production and prediction of MCI in
older adults

Victoria Sanborna , Rachel Ostrandb, Jeffrey Cieslaa, and John Gunstada,c

aDepartment of Psychological Sciences, Kent State University, Kent, OH, USA; bDepartment of Healthcare and Life Sciences, IBM Research,
Yorktown Heights, NY, USA; cBrain Health Research Institute, Kent State University, Kent, OH, USA

ABSTRACT
The population of older adults is growing dramatically and, with it comes increased prevalence of
neurological disorders, including Alzheimer’s disease (AD). Though existing cognitive screening
tests can aid early detection of cognitive decline, these methods are limited in their sensitivity
and require trained administrators. The current study sought to determine whether it is possible
to identify persons with mild cognitive impairment (MCI) using automated analysis of spontaneous
speech. Participants completed a brief neuropsychological test battery and a spontaneous speech
task. MCI was classified using established research criteria, and lexical-semantic features were cal-
culated from spontaneous speech. Logistic regression analyses compared the predictive ability of
a commonly-used cognitive screening instrument (the Modified Mini Mental Status Exam, 3MS)
and speech indices for MCI classification. Testing against constant-only logistic regression models
showed that both the 3MS [v2(1) ¼ 6.18, p¼ .013; AIC ¼ 41.46] and speech indices [v2(16) ¼
32.42, p¼ .009; AIC ¼ 108.41] were able to predict MCI status. Follow-up testing revealed the full
speech model better predicted MCI status than did 3MS (p ¼ .049). In combination, the current
findings suggest that spontaneous speech may have value as a potential screening measure for
the identification of cognitive deficits, though confirmation is needed in larger, prospect-
ive studies.
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Introduction

The population of older adults is growing dramatically world-
wide. By 2030, the population of adults over age 65 is pro-
jected to reach 70 million in the United States (Ortman et al.,
2014) and 1 billion globally (He et al., 2016). This societal
trend is likely to increase the prevalence of neurological con-
ditions. For example, the number of persons with Alzheimer’s
disease (AD) is expected to triple by 2050 and produce an
estimated $1.1 trillion in annual health care costs in the U.S.
alone (Alzheimer’s Association, 2018; Hebert et al., 2013). As
such, early detection of AD and other forms of pathological
cognitive aging is urgently needed.

Numerous brief cognitive screening instruments have
been developed, though these paper-and-pencil measures are
not routinely administered in many settings due to a variety
of practical barriers (Boustani et al., 2003; Khachaturian
et al., 2009). Further, screeners that are commonly adminis-
tered often show limited ability to identify those persons
with more subtle cognitive deficits (Behrman et al., 2017;
Bradford et al., 2009; Chodosh et al., 2004; Mitchell, 2009;
Valcour et al., 2000). Given these limitations, alternative
approaches for monitoring cognitive function are needed.

It may be possible to utilize speech analysis to assist in
the detection of early cognitive decline. Speech production is
a complex neural activity which draws upon many interact-
ing neural systems, including memory and executive func-
tion. Clinical and case studies have shown that changes in
speech production are common in persons with mild cogni-
tive impairment (MCI) and AD (e.g., Bayles et al., 1992;
Henry et al., 2004; Nicholas et al., 1985). For example, per-
sons with AD often exhibit empty speech (i.e., producing
vague rather than specific words such as “thing” in place of
“armchair”) and use higher frequency (i.e., more common)
words, which are easier to access from semantic memory
(Kav�e & Dassa, 2018; Nicholas et al., 1985). Consistent with
this approach, traditional neuropsychological tests of lan-
guage function (e.g., Animal Naming, Boston Naming Test)
have long been used to help diagnose AD and identify those
persons at risk for future conversion to AD (e.g., Blackwell
et al., 2004; Eastman et al., 2013; Henry et al., 2004;
Pakhomov et al., 2016; Pravat�a et al., 2016).

Recent research suggests that spontaneous speech may be
even more sensitive to AD risk than are traditional neuro-
psychological tests of language function (Bayles et al., 1992;
Bucks et al., 2000; Fraser et al., 2016; Giles et al., 1996; Kav�e
& Dassa, 2018; Konig et al., 2018; Lopez-de-Ipina et al.,
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2018; Meilan, 2014; Meilan et al., 2018; Misiewicz et al.,
2018; Nicholas et al., 1985; Toth, 2018). Spontaneous speech
can be collected by asking individuals to describe a picture
(such as the Cookie Theft; [Goodglass & Kaplan, 1983]),
engage in a semi-structured guided interview with the exam-
iner, or retell a well-known story. Responses are audio-
recorded and transcribed by human listeners. Linguistic
characteristics can then be computed using the transcrip-
tions and recordings, and divided into different linguistic
levels, including low-level acoustic and temporal (e.g.,
speech rate, duration of pauses and hesitations), lexical-
semantic (e.g., word choice, word finding difficulties,
repetitions, empty speech), morphosyntactic (e.g., syntactic
structures and inflection errors), and discourse/pragmatic
elements (e.g., cohesion, diversity of word choice) (Boschi
et al., 2017; Slegers et al., 2018). Recent reviews have charac-
terized the many changes in spontaneous speech observed in
persons with AD, including frequent hesitations, semantic
and lexical errors, repetitions, greater inflectional errors, and
reduced referential and temporal cohesion (Boschi et al.,
2017; Filiou et al., 2020; Slegers et al., 2018).

Technological advances have greatly enhanced the poten-
tial of utilizing speech analysis to help monitor cognitive
function over time. Historically, analysis of spontaneous
speech required substantial human labor and linguistic train-
ing to transcribe, code, and analyze speech. New approaches
such as automatic speech recognition and machine learning
techniques, as well as automated ways to measure various
linguistic features from an audio recording or transcript
have automated many of these processes while maintaining
high levels of accuracy. One recent study automatically cal-
culated a suite of lexical-semantic linguistic features from
several spontaneous speech tasks and found that these lin-
guistic features were predictive of both current and future
cognitive test performance in older adults without dementia
(Ostrand & Gunstad, 2020).

When combined with the many practical advantages
of speech-based screening relative to existing methods

(e.g., repeatability, scalability, and self-administration), such
findings encourage examination of the utility of spontaneous
speech as a method for monitoring cognitive status over
time. The current study sought to determine whether a
spontaneous speech task could be used to predict MCI in a
sample of community-dwelling older adults. We chose to
focus on lexical-semantic aspects of speech, as decline in
these abilities is frequently observed in persons with patho-
logical cognitive decline (e.g., word finding difficulties, vague
or empty speech) and techniques for automated generation
of these speech indices has been previously validated.

Materials and methods

Participants

A total of 90 individuals completed the study protocol,
though two were excluded prior to data analyses due to
missing data that precluded determination of MCI status
(years of education and Digit Span). Data from the remain-
ing 88 participants were analyzed to test study hypotheses.
See Tables 1 and 2 for sample characteristics.

Speech tasks and indices

To elicit a spontaneous speech monologue sample from par-
ticipants, the experimenter provided a picture book of the
fairy tale Cinderella with the words removed. The partici-
pant looked through the pictures to remind themselves of
the story, gave the book back to the experimenter, and then
retold the story from memory (following Saffran et al., 1989;
see also MacWhinney et al., 2010). This task has been used
in past work to assess people with aphasia as well as healthy,
non-aphasic controls, and has been shown to be sensitive to
lexical patterns and morphosyntactic control in persons with
intact cognitive function (Fromm et al., 2017; MacWhinney
et al., 2010). Several factors guided the selection of this
speech elicitation task. First, it provides a middle ground of

Table 1. Demographic, medical, and neuropsychological characteristics of the sample.

Intact MCI Test statistic p Cohen’s d

Demographic/Medical
Age 67.81 ± 8.43 68.58 ± 6.58 t(86) ¼ 0.42 .68 0.10
Gender (% Female) 68.9% 65.4% v2(1) ¼ 0.10 .75
Years of education 15.47 ± 2.38 15.27 ± 3.00 t(86) ¼ 0.33 .74 0.07
Hypertension 33.8% 53.8% v2(1) ¼ 3.05 .08
Type 2 diabetes 11.3% 19.2% v2(1) ¼ 0.98 .32
Depression 16.1% 26.9% v2(1) ¼ 1.37 .24

Neuropsychological testing
3MS 58.19 ± 6.23 53.19 ± 11.64 t(86) ¼ 2.62 .001 0.54
HVLT Total Learning 51.71 ± 7.96 44.00 ± 7.86 t(86) ¼ 4.16 <.001 0.97
HVLT Delay 50.32 ± 10.69 41.04 ± 10.71 t(86) ¼ 3.72 <.001 0.86
HVLT Discrimination 52.21 ± 7.66 42.31 ± 10.72 t(86) ¼ 4.90 .001 1.06
CFT Immediate Recall 56.57 ± 13.77 40.04 ± 15.98 t(86) ¼ 4.84 <.001 1.15
CFT Delayed Recall 54.66 ± 13.17 37.76 ± 15.46 t(86) ¼ 5.15 <.001 1.18
Digit Forward—Longest String 51.72 ± 9.49 49.12 ± 10.30 t(86) ¼ 1.14 .001 0.26
Digit Backward—Longest String 55.00 ± 8.76 49.31 ± 10.39 t(86) ¼ 2.62 .001 0.59
Trail Making Test A 54.95 ± 8.08 47.88 ± 10.02 t(86) ¼ 3.47 .001 0.78
Trail Making Test B 53.64 ± 5.86 47.80 ± 8.57 t(86) ¼ 3.64 <.001 0.80
Frontal Assessment Battery 54.65 ± 11.71 41.50 ± 15.34 t(86) ¼ 4.37 <.001 0.96
Controlled Oral Word Association Test 57.39 ± 11.64 55.54 ± 9.21 t(86) ¼ 0.72 .47 0.80
Animal Naming 57.89 ± 12.21 48.65 ± 9.60 t(86) ¼ 3.43 .001 0.84
Boston Naming Test—Short Form 58.68 ± 8.25 54.73 ± 10.25 t(86) ¼ 1.90 .06 0.42
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task constraint, in between other common speech elicitation
tasks—higher constraint than an open-ended interview ques-
tion, as it gives participants some amount of semantic con-
text from the storyline, but lower constraint than picture
description, where the participant is bound by the content
of the picture. As the goal of current study is to investigate
whether individual participants’ variability in linguistic
measures can account for their variability in cognitive status,
a speech task that allows for greater variability in behavior
between participants may be a more effective predictor of
cognitive status. Additionally, a story-retelling task imposes
higher memory demands than does a picture description
task, as the participant must remember the storyline without
having external memory support from the visual cues to
guide their speech and recall. As a result, retelling a story
draws on not just semantic memory to retrieve appropriate
words, but also episodic memory of the story itself as well
as attentional and executive function controls to keep the
thread of the story continuous and comprehensible.
Similarly, retelling a story avoids overt labeling of nouns
which may occur during a picture description task.

Responses were audio-recorded and later transcribed.
Specifically, participants’ speech samples were recorded
using a Shure SM10A head-mounted, directional (cardioid)
microphone, which isolates the participant’s speech from the
experimenter’s voice and other background noise.
Recordings were manually transcribed and time-stamped
off-line by trained transcribers who were blind to the partic-
ipant’s cognitive status and were checked by a second
trained transcriber.

A collection of lexical-semantic features of speech, based
on those used in past work, were calculated automatically
from the transcribed text using Python (version 2.7.17).
Part-of-speech tags were computed using the Natural
Language Toolkit (NLTK, version 3.2.1; Bird et al., 2009)
and the Penn Treebank tagset (Marcus et al., 1993). Lexical
frequency indices were computed based on corpus data
from the widely-used Switchboard and Fisher corpora (Cieri
et al., 2004, 2005; Godfrey & Holliman, 1993), which jointly
comprise 24 million words. A description of each of the lin-
guistic features is presented in Table 3.

Neuropsychological test battery

A brief battery was administered in a fixed order under the
supervision of a licensed clinical neuropsychologist. Specific
clinical tests included the 3MS (Teng & Chui, 1987),
Hopkins Verbal Learning Test (Brandt & Benedict, 2001),
Complex Figure Test (Berry et al., 1991; Meyers & Meyers,
1995), Digit Span (Weschler, 2008), Trail Making Test A
and B (Reitan, 1958), Frontal Assessment Battery (Dubois
et al., 2000), Controlled Oral Word Association Test (Lezak
et al., 2004), Animal Naming (Lezak et al., 2004), and
Boston Naming Test—Short Form (Williams et al., 1989).
The 3MS was chosen over other global cognitive screening
tests, such as the Mini-Mental State Exam (MMSE), as it has
been found to better identify persons with a diagnosis of
MCI and captures greater variability in performance reflect-
ing cognitive domains most often associated with
Alzheimer’s disease (Van Patten et al., 2019). Normative val-
ues (i.e., t-scores) adjusting for age and education (Jones
et al., 2002) were used to characterize test performance (see
Table 1).

The 88 participants were classified into two groups
based on established criteria (Jak et al., 2016): Intact
(N¼ 62) vs. MCI (N¼ 26). Specifically, participants with
two or more t-scores less than 40 in at least one cognitive
domain on objective testing were identified as meeting crite-
ria for MCI.

Procedure

After being evaluated for capacity and completing informed
consent, participants completed a 75-min session comprised
of questionnaires, neuropsychological testing, and spontan-
eous speech tasks. At the completion of testing, participants
were compensated for their time.

Data analysis

All analyses were performed using IBM SPSS 25. After gen-
erating descriptive statistics to characterize the sample,
chi-square and t-tests were used to compare persons with
and without MCI. A series of logistic regressions were then
used to identify the extent to which the 3MS and the
automatically-calculated speech features from the Cinderella
task could predict group status (MCI vs intact). In the
regression using 3MS as a predictor, participants’ 3MS score
was t-scored, accounting for age and education, in order to
promote consistency to its use in clinical settings. In
the regression analysis using the linguistic features as
predictors, all linguistic features were simultaneously
entered into the logistic model as predictors in a single step.
McNemar’s test was used to compare the predictive
ability of these two models. Finally, exploratory logistic
regressions were conducted to further investigate the nature
of the association between individual speech indices and
MCI status.

Table 2. Sample-wise characteristics for each speech feature.

Speech index Intact MCI t(df ¼ 86) p Cohen’s d

Total words 491.55 ± 233.54 348.23 ± 241.29 2.60 .01 0.60
Filler words 0.64 ± 0.61 0.73 ± 0.80 0.55 .58 0.13
Empty words 0.25 ± 0.16 0.18 ± 0.12 1.91 .06 0.49
Definite articles 1.63 ± 0.55 1.26 ± 0.64 2.78 .007 0.62
Indefinite articles 0.51 ± 0.17 0.47 ± 0.19 0.90 .37 0.22
Pronouns 2.54 ± 0.72 2.12 ± 0.77 2.47 .02 0.56
Nouns 4.43 ± 1.11 3.51 ± 1.12 3.55 .001 0.83
Verbs 4.43 ± 1.14 3.81 ± 1.28 2.22 .03 0.51
Determiners 2.51 ± 0.73 1.98 ± 0.80 3.04 .003 0.69
Content words 9.81 ± 2.49 8.06 ± 2.89 2.87 .005 0.64
Lexical Frequency 5.42 ± 0.33 5.62 ± 0.52 2.23 .03 0.46
Type-Token ratio 0.40 ± 0.07 0.44 ± 0.09 2.52 .01 0.50
Honor�e’s statistic �6.10 ± 1.44 �7.86 ± 3.30 3.50 .001 0.69
Brunet’s index 13.40 ± 0.98 12.70 ± 1.36 2.74 .008 0.59
Speech rate 2.41 ± 0.34 2.31 ± 0.43 1.11 .27 0.26
Filler rate 0.07 ± 0.06 0.09 ± 0.08 1.23 .22 0.28

Note. Values show mean and standard deviation of each linguistic feature for
each participant group, as well as the t-statistic, p-value, and Cohen’s d for
the comparison between the two groups.
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Results

Sample characteristics

For the full sample, participants averaged 68.03 ± 7.90 years
of age, 67.0% were female and completed an average of
15.41 ± 2.56 years of education (see Table 1). There were no
significant group differences in any demographic or medical
characteristics between the participants identified as having
intact cognitive function (n¼ 62) and those with MCI
(n¼ 26) (all p> .05). As expected through operationalization
of MCI using Jak criteria, Intact and MCI groups differed
on most neuropsychological tests and many speech indices
(see Table 2).

Of note, the groups differed on the 3MS [t(87) ¼ 2.62,
p¼ .01], though average 3MS t-scores for both groups fell
within the normal range (Intact ¼ 58.19 ± 6.23; MCI ¼
53.19 ± 11.64) and exhibited similar proportions of partici-
pants with t-scores less than 40 (Intact ¼ 3.2%; MCI ¼
7.7%; v2(1) ¼ 0.83, p¼ .36).

Using 3MS t-scores to predict MCI status

A logistic regression analysis was performed with 3MS t-
scores as the predictor variable and MCI status as the binary
outcome variable. The overall proportion of variance
accounted for was modest (Nagelkerke R2 ¼ 0.10), with the
model showing sensitivity of 7.7% (i.e., 2 out of 26MCI par-
ticipants correctly classified as MCI) and specificity of 95.2%
(i.e., 59 out of 62 intact participants correctly classified as
intact). The unstandardized Beta weight for the predictor
was b ¼ �0.72 (SE ¼ 0.03, Wald¼ 4.85, p¼ .03) and esti-
mated odds ratio indicated a reduced likelihood of falling
into the MCI group by a factor of Exp(b) 0.931 (95% CI ¼
0.873–0.992) for each one unit increase in 3MS t-score. This
model results in an overall classification accuracy of 69.3%,
which is significantly better than an intercept-only model
[v2(1) ¼ 6.18, p¼ .013; AIC 41.46]. However, it is important
to note that group sizes are unbalanced in the present

sample, with 70.5% of participants in the Intact group and
29.5% of participants in the MCI group. Thus, although the
model using 3MS as a predictor produced an overall predic-
tion accuracy of 69.3%, this is actually lower than the accur-
acy that would be obtained by a model that assigned all
participants to the majority class (in this case, Intact). As a
result, although the comparison of this model against an
intercept-only model was statistically significant, the model’s
lackluster performance, when compared to chance, high-
lights the need for novel approaches to rapidly assess cogni-
tive status.

Using spontaneous speech indices to predict MCI status

A logistic regression was performed using the full set of
speech indices jointly as predictors and MCI status as the
binary outcome variable. See Table 4 for the output of the
logistic regression. This model showed 50% sensitivity (i.e.,
13 out of 26 persons with MCI correctly identified) and
91.9% specificity (i.e., 57 out of 62 intact persons correctly
identified; Nagelkerke R2 ¼ 0.44). The model using the
speech features as predictors explained significantly more
variance than a constant-only model [v2(16) ¼ 32.42,
p¼ .009] with 79.5% accuracy.

An important point, however, is that many of the indi-
vidual linguistic features are highly correlated with each
other—for example, type-token ratio, Honor�e’s statistic, and
Brunet’s index are different but related ways of measuring
lexical diversity. As a result, many of the predictors in this
multiple regression are highly collinear with each other,
making interpretation of the individual b weights from the
multiple regression difficult (predictors which are highly col-
linear may result in b weights which are largely loaded onto
Predictor A, Predictor B, or unpredictably split between the
two). Although we report b weights for the multiple regres-
sion, they may not be meaningful in interpreting the contri-
bution of individual linguistic features toward predicting

Table 3. Lexical-semantic features that were calculated on the transcripts of spontaneous speech produced by participants retelling the Cinderella story.

Feature name Description

Total words Overall count of all phonological entities spoken; including real words, nonwords, and partial words
Filler words Count of filled pauses (e.g., “uh,” “um,” “hmm”), as a percentage of total word count
Empty words Count of empty words (e.g., “thing,” “place,” “stuff”), as a percentage of total word count
Lexical frequency Mean of the log of the frequency of all real words spoken
Type-token ratio Ratio of unique words (types) to total words (tokens) spoken, used as a measure of vocabulary size and lexical

diversity; higher values means the speaker produced a more varied vocabulary
Honor�e’s statistic Measure of lexical richness/diversity based on the number of words produced exactly once; higher values mean

more diverse speech. It is calculated as: (100 � log(tokens)) / (1 � V1/types), where V1 ¼ number of words
spoken exactly once

Brunet’s index Measure of lexical richness (i.e., degree of variation in vocabulary), which is less biased by text length,
calculated from the total number of words produced (tokens) and the number of unique words (types);
lower values mean richer speech. It is calculated as: tokens � types � (�0.165)

Speech rate Count of total words divided by total elapsed time of the speech (in words per second)
Filler rate Count of filler words divided by total elapsed time of the speech (in words per second)
Definite articles Count of uses of “the,” as a percentage of total word count
Indefinites articles Count of uses of “a” and “an,” as a percentage of total word count
Pronouns Count of pronouns, as a percentage of total word count
Nouns Count of nouns, as a percentage of total word count
Verbs Count of verbs, as a percentage of total word count
Determiners Count of determiners, as a percentage of total word count
Content words All words that are not function words (as defined by the list of stop words in NLTK), as a percentage of total

word count
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MCI group status and thus should be considered
with caution.

Therefore, to investigate the relationship between each
individual linguistic feature and MCI status, separate binary
logistic regression analyses were performed using each
speech feature individually as a predictor of MCI status.
Table 5 shows the outcome of each individual regression.
Numerous indices showed significant improvement in pre-
diction over the intercept-only model, with Nouns (Wald ¼
4.52, p ¼ .002), Determiners (Wald ¼ 7.78, p ¼ .005) and
Honor�e’s statistic (Wald ¼ 7.94, p ¼ .005) remaining so
after correcting for multiple comparisons (Benjamini &
Hochberg, 1995).

Comparing 3MS to full speech model

McNemar’s test showed that the full model of linguistic fea-
tures better predicted MCI group status than did the model
using 3MS t-score as predictor (p ¼ .049).

Exploratory speech models to predict MCI status

Three exploratory analyses were then conducted to examine
the extent to which various combinations of speech indices

could predict MCI status. The first utilized the three speech
indices above that showed a significant independent rela-
tionship to MCI status after correction (i.e., Nouns,
Determiners, and Honor�e’s statistic). This model explained
more variance than did the intercept only model [v2(3) ¼
13.28, p¼ .004; Nagelkerke R2 ¼ 0.20] and exhibited 19.2%
sensitivity and 93.5% specificity. However, McNemar’s test
indicated this model did not differ from those using the
3MS (p¼ .75) or full collection of speech indices (p¼ .12)
as predictors.

A second analysis sought to limit multicollinearity across
speech indices. A linear regression was first performed after
centering all values, and speech indices with an elevated
variance inflation factor (VIF � 5) were removed (Kutner
et al., 2004), specifically: Total words (VIF ¼ 37.46), Filler
words (VIF ¼ 43.51), Definite article (VIF ¼ 16.32),
Pronouns (VIF ¼ 5.65), Nouns (VIF ¼ 20.03), Verbs (VIF
¼ 19.35), Determiners (VIF ¼ 31.34), Content words (VIF
¼ 64.17), Type-Token ratio (VIF ¼ 88.55), Brunet’s index
(VIF ¼ 106.76), and Filler rate (VIF ¼ 36.29). Entering the
five remaining indices (i.e., Empty words, Indefinite articles,
Lexical frequency, Honor�e’s statistic, and Speech rate) pro-
duced a model that performed significantly better than the
intercept-only model [v2(5) ¼ 12.68, p¼ .027; Nagelkerke R2

Table 4. Multiple logistic regression using all speech features jointly to predict MCI status.

b Wald Exp(b)

95% Confidence interval for Exp(b)

Lower bound Upper bound

Intercept 81.45 1.33
Total words 0.00 0.00 1.00 0.98 1.02
Filler words 6.99 4.28 1089.78 1.45 821255.69
Empty words �3.38 1.60 0.03 0.00 6.37
Definite articles 4.88 4.01 131.37 1.11 15572.28
Indefinite articles 3.43 1.95 30.92 0.25 3841.58
Pronouns �0.01 0.00 0.99 0.13 7.28
Nouns �2.70 4.30 0.07 0.01 0.86
Verbs 2.44 4.64 11.42 1.25 104.65
Determiners �2.83 1.45 0.06 0.00 5.88
Content words 0.11 0.01 1.11 0.19 6.64
Lexical frequency �0.78 0.41 0.46 0.04 5.05
Type-token ratio �48.52 0.90 8.49� 10�22 3.00� 10�65 2.40� 10þ22

Honor�e’s statistic �0.55 1.78 0.58 0.26 1.30
Brunet’s index �5.17 1.81 0.01 3.03� 10�06 10.65
Speech rate 1.32 1.28 3.74 0.38 36.66
Filler rate �45.83 2.53 1.25� 10�20 3.68� 10�45 42,149.03

Table 5. Simple logistic regression using each speech feature individually to predict MCI status.

Wald Exp(b) % Intact correctly predicted % MCI correctly predicted p

Total words 5.87 1.00 98.4 11.5 .015
Filler words 0.31 1.21 100.0 0.0 .58
Empty words 3.46 0.04 100.0 0.0 .06
Definite articles 6.74 0.32 95.2 15.4 .009
Indefinite articles 0.81 0.29 100.0 0.0 .37
Pronouns 5.46 0.44 98.4 11.5 .019
Nouns 9.84 0.46 91.9 19.2 .002�
Verbs 4.52 0.63 98.4 11.5 .033
Determiners 7.78 0.36 95.2 23.1 .005�
Content words 7.04 0.76 96.9 19.2 .008
Lexical frequency 4.40 3.53 96.8 15.4 .036
Type-token ratio 5.51 1,314.58 95.2 15.4 .019
Honor�e’s statistic 7.94 0.66 95.2 19.2 .005�
Brunet’s index 6.38 0.68 95.2 19.2 .012
Speech rate 1.22 0.49 100.0 0.0 .27
Filler rate 1.43 49.03 98.4 3.8 .23

Note. � indicates p < .05 when corrected for multiple comparisons using the Benjamini and Hochberg (1995) method.
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¼ 0.19], with a sensitivity of 23.1% and specificity of 93.5%,
though did not differ from either the 3MS (p¼ .55) or full
speech model (p¼ .21).

A final model was developed using speech indices that
could be readily observed by clinicians, specifically Total
words, Filler words, Empty words, Pronouns, Nouns, and
Speech rate. This model was superior to the intercept-only
model [v2(6) ¼ 19.77, p¼ 0.003; Nagelkerke R2 ¼ 0.29] and
correctly identified 34.6% of persons with MCI and 90.3%
of intact controls. Significance was largely driven by greater
use of filler words (Exp(b) ¼ 2.94, p ¼ .02) and fewer nouns
(Exp(b) ¼ .15, p ¼ .005) in persons with MCI. McNemar’s
test indicated this model did not differ from the models
using 3MS (p ¼ .45) or the full collection of speech indices
(p ¼ .27) as predictors.

Discussion

The current study examined whether automatically-gener-
ated indices from spontaneous speech could be used to iden-
tify older adults meeting research criteria for MCI. Analyses
showed that a combination of lexical-semantic speech fea-
tures was somewhat better than the 3MS in predicting cur-
rent cognitive status. Several aspects of these results warrant
brief discussion.

Past work has shown that spontaneous speech indices are
associated with neuropsychological test performance and are
impaired in persons with conditions like AD (Bayles et al., 1992;
Boschi et al., 2017; Ostrand & Gunstad, 2020; Pistono et al.,
2016, 2019). This pattern is not surprising, as speech production
is a complex neural process, particularly when considering the
multiple cognitive processes needed to correctly retell a story
without external cues. Features such as the use of fewer nouns
and determiners, more filler words, and lower lexical diversity
distinguished intact persons from those with MCI and may
serve as an initial step toward the development of self-adminis-
tered, ambulatory monitoring of cognitive status. For example,
the current study used an automated approach when generating
values for lexical-semantic features of speech, which dramatic-
ally reduces the time and effort needed for this task relative to
traditional approaches. Continued advances in automatic speech
recognition (ASR) and growing evidence for a link between cog-
nitive function and other aspects of spontaneous speech (e.g.,
acoustic features, syntax, coherence; Boschi et al., 2017; Slegers
et al., 2018) encourage further work in this area to develop auto-
mated approaches for clinical features such as circumlocutory
speech or literal or semantic paraphasias. If successful, these
tools could provide a method for broad screening for cognitive
dysfunction through smart devices at home or even be modified
to provide real-time information in clinical settings to assist
with diagnosis.

However, prospective studies are much needed to better
understand many aspects of spontaneous speech in older
adults, including factors that contribute to normal between-
subjects variability and identifying those linguistic indices
that best distinguish normal aging from pathological condi-
tions like AD. Socioeconomic and demographic factors such
as age, race, ethnicity, education, premorbid lexicon, literacy

levels, region, and bilingualism are well known to affect
speech production (e.g., Daller et al., 2003; Kav�e et al.,
2009). In addition to these trait-like features, factors such as
the identity of the listener, recent linguistic input, and con-
current memory load—among many others—can influence
speech production. Similarly, the specific aspects of speech
production which are affected by AD may change at various
stages of the disease, as impairments in lexical access, in
particular to higher-frequency and more specific words,
appear to occur early in AD, whereas changes in syntactic
production seem to emerge later (Ahmed et al., 2013; Davis
& Maclagan, 2009; Snowdon et al., 1996). Further, and as
noted above, the present study focuses primarily on lexical-
semantic features, and future investigation of other domains
of speech (e.g., phonetic and phonological, morphosyntactic,
and discourse levels) may provide additional insight and
improve the ability to detect MCI. Lastly, as noted in the
present findings, determining which linguistic features of
speech (taken in combination or individually) are associated
with cognitive function is difficult and complex; despite dif-
fering outcomes in classifying MCI status, McNemar’s test
showed no statistically significant differences in the models’
predictive abilities. Future research is needed to help clarify
which outcomes may be clinically useful versus statistically
significant and the benefits of utilizing continuous values
from neuropsychological testing (c.f. Ostrand & Gunstad,
2020), though such studies will require larger samples and
more diverse samples to draw conclusions.

The current study is limited in several important ways. The
sample size was modest and study participants were highly
educated, native English speakers, and resided within a single,
largely monolingual region of the USA. These and other
demographic factors are likely to affect performance on spon-
taneous speech indices as well as on neuropsychological test
performance (Ardila & Rosselli, 1996; Rosselli & Ardila, 2003;
Saykin et al., 1995). Additionally, research criteria for MCI
were used rather than diagnosis through a comprehensive
clinical evaluation. Though this approach is frequently used in
past work and shows good predictive validity, it cannot
replace a formal evaluation. Conducting a comprehensive
clinical evaluation in conjunction with spontaneous speech
could provide important insight into underlying mechanisms,
including the contribution of key neuroimaging markers (e.g.,
amyloid deposition, global vs. hippocampal atrophy) and
other known risks for cognitive decline in older adults (e.g.,
APOE4; Nevler et al., 2019). Finally, additional work is needed
to determine the most appropriate method for utilizing indi-
ces of spontaneous speech in neuropsychological research.
Though the current study found a combination of lexical-
semantic features was associated with cognitive status, future
studies should evaluate the potential benefits of combining
multiple features to represent components of speech (Cohen
et al., 2016) as they may permit broad assessment of speech
features while addressing statistical concerns.

In conclusion, the current study found that indices
derived from spontaneous speech performed as well as a
commonly used cognitive screening test frequently used in
clinical settings in identifying older adults meeting research
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criteria for MCI. Additional studies are needed to further
investigate automated speech analysis as a method to moni-
tor cognitive decline in community settings.
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