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Purpose: Early detection is critical for effective management of Alzheimer’s dis-
ease (AD) and other dementias. One promising approach for predicting AD sta-
tus is to automatically calculate linguistic features from open-ended connected 
speech. Past work has focused on individual word-level features such as part 
of speech counts, total word production, and lexical richness, with less empha-
sis on measuring the relationship between words and the context in which they 
are produced. Here, we assessed whether linguistic features that take into 
account where a word was produced in the discourse context improved the 
ability to predict AD patients’ Mini-Mental State Examination (MMSE) scores 
and classify AD patients from healthy control participants. 
Method: Seventeen linguistic features were automatically computed from tran-
scriptions of spoken picture descriptions from individuals with probable or pos-
sible AD (n = 176 transcripts). This included 12 word-level features (e.g., part of 
speech counts) and five features capturing contextual word choices (linguistic 
surprisal, computed from a computational large language model, and properties 
of words produced following filled pauses). We examined whether (a) the full set 
jointly predicted MMSE scores, (b) the addition of contextual features improved 
prediction, and (c) linguistic features could classify AD patients (n = 130) versus 
healthy participants (n = 93). 
Results: Linguistic features accurately predicted MMSE scores in individuals 
with probable or possible AD and successfully identified up to 87% of AD par-
ticipants versus healthy controls. Statistical models that contained linguistic sur-
prisal (a contextual feature) performed better than those that included only 
word-level and demographic features. Overall, AD patients with lower MMSE 
scores produced more empty words, fewer nouns and definite articles, and 
words that were higher frequency yet more surprising given the previous 
context. 
Conclusion: These results provide novel evidence that metrics related to con-
textualized word choices, particularly the surprisal of an individual’s words, cap-
ture variance in degree of cognitive decline in AD. 
It is estimated that by 2050, over 115 million people 
worldwide will be living with dementia, a group of cognitive 
symptoms that includes declines in memory, language, and 
problem-solving, as well as difficulty concentrating, confusion, 
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and struggling to express one’s thoughts (Alzheimer’s Associa-
tion, 2023; Prince et al., 2013). Alzheimer’s disease  (AD), the  
progressive neurological disease that is the most common 
cause of dementia, is itself expected to double in prevalence 
by 2060 (Alzheimer’s Association, 2023). As there is currently 
no cure, the impacts of dementia, both from AD and from 
other sources, may be better managed through earlier and 
more accurate diagnoses (Black et al., 2017; Rasmussen & 
Langerman, 2019; Siemers et al., 2016). Early detection,
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1 The exception to this is if a word’s position results in a change to its 
syntactic class or assigned part of speech (e.g., dog used as a verb).
especially the distinction between dementia and cognitive 
changes typical in aging, may also significantly reduce the 
burden on caregivers, providing more time to adjust to the 
patient’s potential changes in mood, personality, and depen-
dence that are associated with AD pathology (de Vugt & 
Verhey, 2013; Mittelman et al., 1996). Unfortunately, how-
ever, existing screening methods are often costly and 
require substantial expertise to administer; they may be 
insensitive to mild changes in cognitive abilities that could 
indicate early stages of AD; and they are frequently only 
able to be administered in clinical settings, which can 
require prohibitive amounts of time and/or travel for some 
individuals to access (Bayly et al. 2020; Bradford et al., 
2009; Wilson et al., 2023). 

Recently, there has been increased focus on developing 
complementary screening tools that could address these 
shortcomings. One approach that has shown promise in 
many studies is the use of linguistic features computed from 
open-ended connect speech (e.g., Bucks et al., 2000; Fraser 
et al., 2015; Guinn & Habash, 2012; Jarrold et al., 2014; 
Meilán et al., 2014; Thomas et al., 2005; see Mueller, 
Hermann, et al., 2018, for a review). Foundational studies 
demonstrated that cognitive decline in AD is associated with 
difficulties in word-finding and semantic retrieval, related to 
the degradation of meanings in memory and a poorer abil-
ity to access them (see Burke & Shafto, 2008; Kemper & 
Altmann, 2017). This is posited to explain attested patterns 
in mild-to-moderate AD patients’ connected language, 
which include reduced semantic specificity (Forbes-McKay 
et al., 2013; Nicholas et al., 1985) and greater use of anaphora, 
indefinite articles, and high-frequency words (Croisile et al., 
1996; Hier et al., 1985; Kavé & Dassa, 2018; Nicholas et al., 
1985; Slegers et al., 2018). 

Even in early stages of dementia, such as among 
asymptomatic individuals with genetic AD risk factors 
(Cuetos et al., 2007) or early mild cognitive impairment due 
to AD (Ahmed et al., 2013; Mueller, Koskic, Hermann, 
et al., 2018; Mueller et al., 2016), connected speech has 
been suggested to show signs of the disease’s impact. That 
is, relative to healthy controls (see Mueller, Koscik, Clark, 
et al., 2018), these individuals’ speech contains less seman-
tic content—including a reduction in relevant vocabulary 
items in picture descriptions (Stark et al., 2025)—and 
reductions in fluency (i.e., more repetitions, revisions, and 
filled or unfilled pauses; Mueller, Koscik, Hermann, et al., 
2018). These changes, particularly in semantic content, 
appear to become more pronounced with disease progres-
sion (Ahmed et al., 2013). Other studies have found that 
AD progression also co-occurs with more frequent produc-
tion of words and phrases that are not expected in the 
current context (Croisile et al., 1996; Forbes et al., 2002; 
Murray, 2010) and the need for more speaking turns to 
convey an intended message (Feyereisen et al., 2007). 
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As others have noted (e.g., Fraser et al., 2015; Mueller, 
Hermann, et al., 2018), these changes in connected speech 
patterns suggest promise in identifying and tracking stages 
of cognitive decline, particularly in prodromal AD where 
they could distinguish between changes due to typical aging. 
One reason is that these speech and language effects often 
occur prior to more overt memory deficits and the degrada-
tion of more holistic language processing, which causes obvi-
ous impacts on coherent communication (such as that 
caused by deficits in articulatory production and syntax; 
Bayles et al., 1992; Filiou et al., 2019; Forbes-McKay et al., 
2013; Hier et al., 1985; Mueller et al., 2016). Moreover, con-
nected or spontaneous speech samples can be collected on a 
regular basis with little burden on the individual participant 
through, for example, telephone interviews (Diaz-Asper 
et al., 2021). These samples and calculated linguistic fea-
tures could thus be used as an early warning system  to
trigger a thorough clinical assessment, as individual-
specific baselines to measure the trajectory of disease pro-
gression, and/or to provide informed strategies for dealing 
with communication loss—one of the most frequently 
reported difficulties that caregivers face (Murray et al., 
1999). Indeed, prior work has demonstrated that automat-
ically extracted linguistic features—collected during pic-
ture descriptions and monologues—explain significant 
variability in older adults’ performances on neuropsycho-
logical assessments, including those conducted 1 year into 
the future (Ostrand & Gunstad, 2021). 

The present investigation builds on this prior work 
by testing the utility of two new classes of linguistic features 
in predicting Mini-Mental State Examination (MMSE) 
scores and classifying AD patients from healthy controls. 
Several past studies using fully automated methods have 
examined the relationship between the presence or severity 
of AD and linguistic features derived from (a) properties 
and counts of individual words or word types, such as 
overall lexical frequency and the count of various parts-of-
speech (e.g., nouns, verbs); (b) measures of speech fluency 
(e.g., counts of repetitions, revisions, filler words); and (c) 
measures of lexical richness, such as the type–token ratio 
(ratio of unique words to total words; Blanken et al., 1987; 
Bucks et al., 2000) and Honoré’s statistic (a measure of 
words produced only once; Honoré, 1979). Each of these 
metrics is based on the occurrence or properties of individ-
ual words, without regard to the word’s place within the 
larger discourse context. In other words, past work has 
focused on linguistic features that have the same value 
regardless of individual words’ position in the discourse: 
Dog is counted as a noun1 and as a specific lexical fre-
quency, and the transcript has the same ratio of types to
erms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



tokens, regardless of whether words occur in predicted loca-
tions (“I have a pet dog”), the transcript is scrambled (“pet 
a have  I  dog”), or the participant produces the word in an 
unpredictable context (“I mailed a coconut to my dog”). In 
contrast, relatively little attention has been placed on inves-
tigating word production in relation to the context where 
the word was produced in the discourse—features for which 
the position of an individual word does matter—and 
whether features that capture this information are meaning-
ful for differentiating patients with dementia from healthy 
controls or predicting cognitive test scores.

Here, we considered two classes of these contextu-
ally informed linguistic features, referred to as “context 
features” for short, which we hypothesized might change 
in AD and with the disease’s progression. The first is the 
properties of words that directly followed filler words 
(e.g., um, ah), as fillers are often considered a signal of dif-
ficulty in lexical retrieval or deciding how to continue the 
sentence (Clark & Fox Tree, 2002). We hypothesized AD 
patients would produce filler words in different contexts 
than healthy controls and that this behavior would 
increase with disease progression. Specifically, we expected 
that AD patients would have greater difficulty with lexical 
retrieval and thus display (a) higher median frequency of 
words that followed a filler and (b) a greater distance 
between that filler and the next content-carrying word. 

Second, we took advantage of computational language 
modeling to estimate the probability of individual words 
given the context they appeared in. This enabled us to 
develop measures based on linguistic surprisal (Shannon, 
1948) of how unexpected a speaker’s words were within the 
ongoing discourse. Based on the past findings that AD pro-
gression is related to declines in speech fluency (i.e., increases 
in revisions and repetitions; Mueller, Koscik, Hermann, 
et al., 2018) and increases in empty words (Hier et al., 1985; 
Nicholas et al., 1985) or words that are contextually unex-
pected or inappropriate (Croisile et al., 1996; Forbes et al., 
2002; Murray, 2010), we hypothesized that AD patients 
would show overall increases in the linguistic surprisal of 
their words and that this would heighten with disease pro-
gression. We estimated the word-by-word surprisal of each 
speaker’s speech sample using the pretrained GPT-2 com-
putational language model (Radford et al., 2019). This 
model captures the statistical tendencies of the English lan-
guage through its training in next-word prediction from over 
8 million online documents. As such, unexpected word 
choices or departures from fluency would result in higher 
overall estimated surprisal values, providing a means to 
operationalize these word choice patterns in a single 
variable. 

To test the relevance of these novel properties as 
diagnostic signals for AD and compare their efficiency to 
Flick &
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a larger set of linguistic features from prior literature, we 
analyzed picture descriptions and MMSE scores collected 
as part of the Pitt corpus of DementiaBank (Becker et al., 
1994). This resource includes data from patients with 
probable and possible AD, as well as healthy controls. 
While MMSE scores are not a perfect measure of one’s 
degree of cognitive decline due to AD (Arevalo-Rodriguez 
et al., 2015, 2021), we considered this to be a first step in 
evaluating the new features, which, if successful, would 
motivate follow-up work. All linguistic features were cal-
culated from transcriptions of picture descriptions using 
an automated pipeline, thus requiring no manual coding. 
Once computed, we examined the relationship between the 
linguistic features and dementia in AD in two ways. First, 
we investigated whether the computed features could pre-
dict the AD patients’ MMSE scores and whether the 
novel, contextually informed features we developed here 
explained additional variance, beyond that captured by 
previously studied properties. In this way, we tested 
whether the new features improved prediction of an avail-
able proxy measure of dementia severity (i.e., cognitive 
impairment) in AD patients. Second, we investigated 
whether the overall set of linguistic features could be used 
for binary classification by building a model to separate 
participants into healthy controls versus AD patients, 
based solely on features computed from their connected 
speech production. 
Method 

Data Set 

The data analyzed in the current study come from the 
Pitt corpus of DementiaBank, collected as part of the Alz-
heimer Research Program at the University of Pittsburgh 
(Becker et al., 1994) and made publicly available through 
the TalkBank corpus (http://www.talkbank.org). The cur-
rent study was not subject to an approval process as it 
consisted of a reanalysis of existing data and no new data 
collection. The original study sample consisted of 204 AD 
patients and 102 healthy control participants, recruited 
from a variety of sources, including the Allegheny County 
Medical society, Pittsburgh-area neurologists and psychia-
trists, and direct patient referral from the Benedum Geri-
atric Center at the University of Pittsburgh Medical Cen-
ter. To be included in the original study, participants were 
required to be at least 44 years of age with the ability to 
read and write in English (prior to dementia onset), have 
completed education beyond the seventh grade, have no 
history of nervous system disorders or having regularly 
taken medications affecting the central nervous system 
(excluding antidepressants), and have successfully completed 
the MMSE (Folstein, Folstein, & McHugh, 1975) and
Ostrand: Contextual Language Features Improve AD Prediction 3
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achieved an initial score of 10 or greater (test range: 0–30). 
Once enrolled, all participants underwent an extensive 
neuropsychiatric evaluation over the course of 2 weeks, 
which included a detailed medical history and physical 
exam, neurologic history and examination, semistruc-
tured psychiatric interview, and a neuropsychological 
assessment. Participants also completed laboratory tests, 
including a standard battery of hematologic studies, 
blood chemistry studies, liver and thyroid function tests, 
vitamin level assessments, a rapid plasma regain test, an 
electroencephalogram, and a computed tomography scan 
of the head. 

The results of these evaluations were reviewed by 
the original study’s team of clinicians to classify partici-
pants as AD patients or healthy controls. Criteria for clas-
sification as AD included that the individual demonstrate 
“a history of progressive cognitive and functional decline 
and an abnormal mental status examination (performed 
during the neurological examination).” After the study 
closed, the clinical records of individual participants, as 
well as autopsies if available, were reviewed to arrive at a 
final, consensus clinical classification.2 This resulted in a 
final sample of 181 individuals classified by the clinical 
team as exhibiting probable AD. Neuropsychological test 
data collected from these individuals confirmed that 168 
of these patients (93.3%) showed deficits in two or more 
areas of cognition (memory, visual construction, visual 
perception, attention, or language), consistent with the 
criteria for clinical diagnosis of probable AD from 
McKhann et al. (1984; note that these criteria were not 
available at the start of the original study). When also 
considering impairments in orientation (temporal, per-
son, and place) and executive function, 179 of the 181 
patients (98.9%) met the criteria of two or more 
impaired domains, demonstrating high correspondence 
with the McKhann et al. (1984) criteria. 

An additional 54 participants included in the Talk-
Bank release of data are described as having “Possible 
Alzheimer’s Disease” based on the clinical team’s assess-
ments. According to McKhann et al. (1984), this diagnosis 
is made on the basis of dementia syndrome without other 
neurologic, psychiatric, or systemic explanations, which 
may vary in its onset, presentation, or clinical course and 
which may occur in the presence of a second systemic or 
brain disorder that is sufficient to produce dementia, but 
not considered to be the cause of that dementia. Here, we 
used the diagnosis labels (“probable” and “possible” AD 
•

2 Note that the specific details or thresholds for assessments that 
informed the determination of the consensus classification were not 
described in the original study. We report here the tests and other cri-
teria that were administered and the behavioral/cognitive information 
that was considered in arriving at the consensus classification. 
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vs. healthy control participants) assigned by the clinicians 
in the original study as the ground truth labels for analyz-
ing participants’ data in the current study. See Becker 
et al. (1994) for further details on participant recruitment 
and neuropsychological evaluations. 

Participants 

Using the clinical diagnoses from Becker et al. 
(1994), we defined two groups of participants for inclusion 
in the current study: impaired participants and healthy con-
trols. In the impaired participants group, we included indi-
viduals who were clinically assessed as having probable or 
possible AD but excluded those with a main diagnosis of 
mild cognitive impairment (MCI), memory impairment, or 
other form of dementia. As some participants were clini-
cally assessed at multiple time points and thus received 
multiple diagnoses over time, we based the inclusion cri-
teria on the diagnosis that was included in the transcript 
header (the Codes for the Human Analysis of Transcripts 
[CHAT] file ID tier) to capture the diagnosis at the time 
point at which the speech sample was collected. Note that 
only the main diagnosis was entered into the CHAT file, 
and thus it is possible that some participants had addi-
tional diagnoses beyond possible or probable AD. The 
participants included in the impaired group consisted of 
118 individuals with a diagnosis of probable AD and 12 
individuals with a diagnosis of possible AD. The healthy 
controls group included those participants marked as con-
trol in the ID tier of the CHAT file. 

In addition, we excluded participants who produced 
fewer than 50 words in the speech elicitation task. The 
number of unique participants and speech transcripts who 
were included in each of the analyses conducted (see Data 
Analysis section) are reported in Table 1. 

Two analyses were conducted on the participant 
samples. The first analysis involved using linguistic fea-
tures from the impaired participants’ spontaneous speech 
transcripts to predict their concurrent MMSE scores; thus, 
only those participants and speech samples with an 
MMSE administered at the same time point were 
included, resulting in a slightly reduced number of partici-
pants included in this analysis, as shown in Table 1. Note 
that this resulted in the exclusion of some participants’ ini-
tial assessments, which were missing recorded MMSE 
scores. As a result, some of the initial assessments avail-
able for analysis include MMSE scores below 10. The sec-
ond analysis was binary classification, predicting whether 
an individual participant was in the impaired or healthy 
control group. For this analysis, numerical MMSE scores 
and demographic information were not necessary; we only 
required the clinical diagnosis assessed by the original 
study authors. We were thus able to include additional
erms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



Table 1. Number of participants included in each of the analyses reported below: (a) continuous prediction of Mini-Mental State Examination 
(MMSE) score (only impaired participants) and (b) binary classification of impaired versus healthy control participants. 

Variable 

MMSE prediction Binary diagnosis classification 

Impaired participants Impaired participants Healthy control participants 

Number of transcripts 176 194 200 

Number of individuals 127 130 93 

Age: M ± SD 71.9 ± 8.58 71.7 ± 8.54 64.6 ± 8.06 

Gender 38 male, 89 female 41 male, 89 female 37 male, 56 female 

Education: M ± SD 12.2 ± 2.77 12.2 ± 2.76 14.0 ± 2.55 

Diagnosis 115 probable AD, 12 possible AD 118 probable AD, 12 possible AD N/A 

Note. Age, gender, education, and diagnosis values are based on the first available speech transcription with an accompanying MMSE 
score. Diagnosis refers to the group assignment within the impaired participant sample as indicated by the original study: either probable or 
possible Alzheimer’s disease (AD). N/A = not applicable. 
participants and transcripts in this analysis as long as they 
had a clinical assessment, even if the time point was miss-
ing the MMSE score. 

Each impaired participant completed the spontane-
ous speech task during at least one session and could 
return for follow-up sessions at approximately 1-year 
intervals (single session: 81 patients; two sessions: 36; three 
sessions: 11; four sessions: two). During each session, they 
completed the speech task and the MMSE. Healthy con-
trol participants returned for up to four follow-up sessions 
(single session: 34 participants; two sessions: 28; three ses-
sions: 19; four sessions: seven; five sessions: five). 

Healthy control participants scored numerically 
higher on the MMSE compared to impaired individuals 
during their first available assessment, with a mean score 
near ceiling (healthy controls: M = 29.11, SD = 1.04; 
impaired: M = 18.90, SD = 4.99). Healthy controls also 
scored higher on the MMSE when averaging the assess-
ments across all available visits (healthy controls: M = 
29.12; SD = 1.13; impaired: M = 18.40, SD = 5.14) and 
showed reduced declines in MMSE scores from one ses-
sion to the next (healthy controls: mean difference = 
0.090, SD = 1.47; impaired: mean difference = 3.49, SD = 
4.40). As reported by Becker et al. (1994), the original 
sample of probable AD participants—which makes up the 
majority of our “impaired” group—showed significant 
deficits in several neurologic functions (e.g., olfaction, 
gait) and psychiatric characteristics (e.g., increased irrita-
bility, social withdrawal), relative to the healthy controls 
(see Becker et al., 1994, for a complete accounting of the 
neurological and psychiatric symptoms that were observed 
in the larger sample).3 In the sample used here, the 
3 The individual participant data for these neurological and psychiat-
ric symptoms were not made available with the public release of the 
data set, so we are unable to provide the group means on these mea-
sures for our sample. 
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impaired participants were older on average (healthy con-
trols: M = 64.61 years, SD = 8.06; impaired: M = 
71.70 years, SD = 8.54; measured at first available 
assessment) and had lower levels of education (healthy 
controls: M = 13.99 years, SD = 2.55; impaired: M = 
12.23 years, SD = 2.76). The healthy control sample had 
a higher proportion of males (37 out of 93 individuals, 
39.78%) than did the impaired sample (41 out of 130, 
31.54%). Gender was not assessed independent of sex. 
For more details regarding the participant make-up, see 
Becker et al. (1994). 

In predicting MMSE scores in the sample of 
impaired participants, we assessed the potential of the 
novel, contextual linguistic features to improve detection 
and quantification of cognitive decline associated with 
dementia due to AD. The current sample is a particularly 
interesting test case, as it consists of participants with a 
very wide range of MMSE scores, yet the majority of indi-
viduals received a consensus diagnosis of probable AD. If 
the novel contextual features developed in the present 
work prove useful for prediction in the current sample, 
this could motivate future work that integrates these fea-
tures into assessments of patients with less severe or no 
cognitive impairments, including MCI and subjective cog-
nitive decline, and the prospective conversion to AD, in 
longitudinal studies. 

It is, however, important to note that the use of 
MMSE scores as an outcome measure to approximate 
degree of cognitive impairment in dementia has limita-
tions. While it is expected that individuals with greater 
cognitive decline will on average score lower on the 
MMSE—and indeed we observe greater reductions in 
MMSE scores across successive tests in AD patients than 
healthy controls in the current sample—its accuracy and 
sensitivity for detecting the conversion from MCI to 
dementia, and from MCI to AD, has been found to vary 
considerably (Arevalo-Rodriguez et al., 2015, 2021).
Ostrand: Contextual Language Features Improve AD Prediction 5
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However, the ease of its use—requiring only 5–15 min to 
administer—has led the MMSE to be widely adopted in 
prior studies aiming to develop and test new screening 
methods for dementia. This includes several recent stud-
ies that have examined the utility of language or lin-
guistic features for dementia and/or MCI detection 
(e.g., Ambrosini et al., 2019, 2024; Balagopalan et al., 
2021; Beltrami et al., 2018) and multiple scientific com-
munity challenges that focused on predicting MMSE 
scores from linguistic features, organized by Dementia-
Bank (Luz et al., 2020, 2021). It is also used as a stan-
dard benchmark, against which new screening tools can 
be evaluated (Mitchell, 2017). We thus considered it 
valuable to test whether the new suite of linguistic fea-
tures developed in the current research improved pre-
diction of MMSE scores in AD patients, even though it 
is an imperfect measure of cognitive decline or demen-
tia severity associated with AD. If this is found to be 
true in the Pitt Corpus’s sample, which is both uniquely 
large and uniquely heterogenous in terms of impairment 
severity, it will motivate future work that tests whether 
these features can predict more sensitive and compre-
hensive neuropsychological evaluations of AD, demen-
tia, and MCI patients. 

Procedure 

As part of an extensive neuropsychological battery, 
participants completed a picture description task using the 
“Cookie Theft” image from the Boston Diagnostic 
•

Table 2. List of linguistic features and their corresponding categories. 

Category Feature

Word-level Total words Total count of wo

Fillers† Count of filler wo

Empty words† Count of empty w

Definite articles† Count of the defin

Indefinite articles† Count of indefinit

Pronouns† Count of pronoun

Nouns† Count of nouns 

Verbs† Count of verbs 

Content words† Count of all real w

Lexical frequency Median of the log

Type–token ratio Ratio of unique w

Honoré’s statistic Measure of lexica

Contextual: 
Surprisal 

Median surprisal Median surprisal 

IQR of surprisal Interquartile range

Contextual: 
Fillers 

Content word frequency after filler Median frequency

Distance to next content word Median distance, 

Surprisal after filler Median surprisal 

Note. Features marked with † were normalized by the length of the tran
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Aphasia Examination (Goodglass, Kaplan, & Barresi, 2001). 
Participants were shown the image and asked to describe 
everything in the depicted scene while their spoken responses 
were recorded. The recordings were then transcribed into 
text files using the CHAT protocol (MacWhinney, 2000). 
We only included transcripts from impaired individuals 
and healthy controls, which contained at least 50 words in 
the description. 

Linguistic Features 

Seventeen linguistic features were calculated on each 
transcript using custom Python (Version 3.10.8) scripts 
(see Table 2 for a description of the features used in the 
present work). A subset of the features was selected based 
on prior clinical research demonstrating a relationship 
between these features of spontaneous speech and AD. 
Specifically, past work has associated AD with changes 
that include increased production of empty or indefinite 
words (Croisile et al., 1996; Ehrlich, Obler, & Clark, 
1997; Hier et al., 1985; Nicholas et al., 1985), higher 
frequency words (Fraser et al., 2015; Kavé & Goral, 
2018), and function words (Almor, Kempler, MacDonald, 
Andersen, & Tyler, 1999; Fraser et al., 2015; Hier et al., 
1985; Kavé & Goral, 2016). AD patients also show 
reduced production of content words (Ahmed et al., 2013; 
Kavé & Goral, 2016) and definite references to objects 
(Feyereisen et al., 2007), as well as more frequent produc-
tion of irrelevant information (Carlomagno et al., 2005; 
Croisile, et al., 1996; Forbes et al., 2002; Murray, 2010)
Explanation 

rds spoken, including real words, nonwords, and partial words 

rds (e.g., “um,” “uh”) 

ords (e.g., “stuff,” “thing”) 

ite article “the” 

e articles “a” and “an” 

s 

ords that are not function words 

 of the frequency of all real words 

ords to total words spoken 

l richness based on the number of words produced exactly once 

calculated across a speech transcript 

 of surprisal calculated across a speech transcript 

 of the next content word following a filler word 

in words and nonwords, from a filler word to the next content word 

of the next real word after a filler 

script. IQR = interquartile range. 
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and/or production of fewer words that are relevant to the 
discourse (Croisile et al., 1996; Feyereisen et al., 2007; 
Fraser et al., 2015; Nicholas et al., 1985). Finally, AD 
patients also show an overall reduction in lexical diversity, 
that is, producing fewer unique words and more repetition 
of the same words in their speech (Bucks et al., 2000; Hier 
et al., 1985; Mueller et al., 2016). 

On the basis of these findings, we selected 12 dis-
course features that are defined at the individual word 
level and have attested relationships with AD from previ-
ous work, which we refer to as “word-level features” for 
convenience. These features were derived from the produc-
tion of isolated words (i.e., not taking into account the 
word’s location within the language context) and included 
the total number of words, median lexical frequency, 
type–token ratio (the ratio of unique words to total 
words), and Honoré’s statistic (a measure of lexical rich-
ness based on the number of words produced exactly 
once), as well as counts of various lexical categories: filler 
words (e.g., um, uh), empty words (e.g., stuff, thing, place), 
definite and indefinite articles, pronouns, nouns, verbs, 
and content words. For the latter count features, the fea-
ture was normalized to the length of the transcript by 
dividing the raw count of that feature by the square root of 
the total number of words in the transcript. Part of speech 
counts were determined using the Natural Language Toolkit 
in Python (S. Bird et al., 2009) and the Penn Treebank 
tag set (Marcus et al., 1993). Lexical frequency was calcu-
lated using the Switchboard and Fisher corpora, a collec-
tion of spoken telephone conversations consisting of 24 mil-
lion words and 1,975 hr of speech (Cieri et al., 2004, 2005; 
Godfrey & Holliman, 1993). 

The remaining five linguistic features were novel 
context features, meaning they were calculated on each 
word in the transcript based on the larger linguistic context 
in which it occurred. Three context features were based on 
lexical surprisal (also known as Shannon information con-
tent; Shannon, 1948), defined as the negative logarithm of 
the probability of a word within its context, in other words, 
how unexpected a particular word is given the preceding lin-
guistic context. Word surprisal values extracted from large 
language models have been shown to correlate with behav-
ioral measures of language processing difficulty (e.g., Balling 
& Baayen, 2012; Smith & Levy, 2013) and human brain 
activity during language comprehension (e.g., Brennan & 
Hale, 2019; Frank et al., 2015). In speech production, 
these surprisal values can thus operationalize the diffi-
culty a speaker experiences while undergoing lexical 
selection and planning. They can also be viewed as a 
measure of how far a speaker deviates from the language 
patterns and transitional probabilities between words 
that are “expected” based on the substantial corpus 
(approximately 40 GB) of training text data. 
Flick &
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The probability of each word given the preceding 
words that were produced in the speech stream was com-
puted using the pretrained large language model GPT-2 
(Radford et al., 2019), which was trained on a corpus 
of over 8 million documents. We selected GPT-2 to com-
pute word-by-word surprisal for two reasons: First, it 
had the desirable property that it was trained using uni-
directional, next-word-prediction, meaning that each tar-
get word is predicted on the basis of only the previous 
words in a text, rather than bidirectional prediction that 
considers words that both precede and follow a target 
word, as is the case in other computational language 
models (e.g., the BERT model; Devlin et al., 2018); thus, 
GPT-2’s calculations of surprisal are aligned with how 
humans process language. Second, several results have 
demonstrated that predictions or contextualized word 
embeddings extracted from GPT-2 correlate with human 
ratings of word surprisal or neural responses during natu-
ralistic listening (Cauchteaux et al. 2021; Goldstein et al., 
2020, 2024). 

We retrieved the GPT-2 model from the huggingface 
online repository (http://www.huggingface.co) and used 
the minicons (Misra, 2022) and transformers (Wolf et al., 
2020) Python libraries to convert each transcript to a 
series of word tokens. The conditional probability of each 
token was calculated using a sliding window of the previ-
ous 12 tokens and converted to surprisal by taking the 
negative log of the conditional probability. At the start of 
a transcript (beginning from the second token), the con-
text window was incrementally increased to 12. 

After computing lexical surprisal for each word in 
the transcript, we calculated three related features: (a) 
the median surprisal across all tokens in a transcript, (b) 
the interquartile range of surprisal within a transcript 
(capturing the spread), and (c) the median surprisal of 
words immediately following a filler word (e.g., “the boy 
is um, falling,” surprisal of falling). In the latter case, 
surprisal was calculated after removing the fillers from 
the 12-token window over which the word’s conditional 
probability was calculated (i.e., the probability was calcu-
lated on the linguistic context as if that filler word, as 
well as any others in the preceding context window, had 
not occurred). The final two context features were also 
defined based on properties of utterances that followed 
the appearance of a filler word. These were (d) the 
median distance from a filler to the next content word 
(e.g., “the boy is grabbing um at the plate,” distance = 3 
words) and (e) the median lexical frequency of the next 
content word after a filler (e.g., frequency of plate in the 
previous example). 

In addition to these 17 linguistic features (12 word-
level from prior literature and five novel context features),
Ostrand: Contextual Language Features Improve AD Prediction 7
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three demographic properties were used as predictors in 
the linear regression: the participant’s age (years), sex 
(male/female), and education (years). Thus, there were a 
total of 20 predictors in the statistical model: 17 linguistic 
features and three demographic features. 

Data Analysis 

Prediction of Impaired Participants’ MMSE Scores 
From Linguistic Features 

To assess whether the automatically extracted lin-
guistic features could predict impaired participants’ con-
tinuous neuropsychological test scores, we built a multi-
ple linear regression model in R (Version 4.2.2; R Core 
Team, 2021) to predict each participant’s MMSE score
as a function of all linguistic features entered jointly as 
predictors. For each analysis, two multivariate regression 
models were constructed: (a) a baseline model, which 
included only the three demographic variables (age, sex, 
years of education) as predictors, and (b) a test model, 
which included the three demographic variables plus the 
17 linguistic variables as predictors. In both cases, the 
outcome variable was MMSE score. We used model 
comparison to test whether the linguistic features added 
explanatory power for MMSE score relative to demo-
graphic variables alone. 

To test whether our novel context features explained 
variance beyond the individual word-level features, we 
also compared a model containing only the word-level 
and demographic properties as predictors against one addi-
tionally containing the context features. This was conducted 
first using the full set of five context features and then 
using two subsets: those primarily related to filler usage 
(distance to next content word following a filler, median 
•

Table 3. Summary of analyses, participant counts, and Mini-Mental State

Analysis group Dependent variable 
No. 
tra

Impaired participants, all 
sessions 

MMSE Imp

Impaired participants, 1st 
sessions only 

MMSE Imp

Impaired & healthy participants, 
all sessions 

Binary group classification Imp
Co

Impaired & healthy 
participants, 1st sessions 
only 

Binary group classification Imp
Co

Note. Two analytical approaches were employed. First, we attempted 
features. This was done separately using data from all sessions (first row
second analysis approach was performing binary classification of healthy
tures. This was again separately conducted using data from all session
row). Note that some patients were classified as impaired but did not h
classification analyses have a slightly higher N than the continuous MMS
scores in these groups were calculated using those participants with reco
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frequency of the content word, and surprisal of the next 
word following a filler) and those remaining context fea-
tures derived from surprisal (median surprisal, inter-
quartile range of surprisal; see Table 2 for feature catego-
ries). All analyses were conducted using two sets of tran-
scripts from impaired participants: (a) restricted to the 
first available assessment for each participant (n = 127 
transcripts) and (b) the complete set of assessments, 
including all follow-ups (n = 176 transcripts). (As noted in 
Participants section, the first available assessment with an 
MMSE score was not necessarily the initial assessment.) 
See Table 3, rows 1 and 2, for the profile of participants 
included in these analyses. 
Classification of Impaired Versus Healthy 
Control Participants 

To test whether the complete set of computed lin-
guistic features could accurately classify an individual as 
impaired or a healthy control, we performed a fivefold strati-
fied cross-validation classification analysis in Python using 
the scikit-learn library (Buitinck et al., 2013; Pedregosa 
et al., 2011). The complete sample (i.e., all transcripts from 
the healthy controls and impaired patients) was divided into 
five folds, with numbers of each diagnosis group propor-
tional to the full sample. On each iteration of model train-
ing, a logistic regression classifier with L2 regularization was 
trained on four of the five folds using nested cross-validation 
to select an optimal regularization weight parameter (from 
five values on a logarithmic scale between 1e−4 and 1e4 ). 
The training data were first standardized so that each predic-
tor and the outcome variable had a mean of zero and unit 
variance. The model was then trained on the four training 
folds to optimize its regularization parameter for classifica-
tion performance, based on the area under the receiver
 Examination (MMSE) scores. 

of speech 
nscripts Mean MMSE MMSE range 

aired: 176 Impaired: 18.40 (SD = 5.14) Impaired: 1–30 

aired: 127 Impaired: 18.90 (SD = 4.99) Impaired: 3–30 

aired: 194 
ntrol: 200 

Impaired: 18.40 (SD = 5.14) 
Control: 29.12 (SD = 1.13) 

Impaired: 1–30 
Control: 24–30 

aired: 130 
ntrol: 93 

Impaired: 18.90 (SD = 4.99) 
Control: 29.11 (SD = 1.04) 

Impaired: 3–30 
Control: 26–30 

to predict impaired participants’ MMSE scores based on linguistic 
) and data from only the first available sessions (second row). The 
 controls versus impaired participants based on their linguistic fea-
s (third row) and data from only the first available sessions (fourth 
ave MMSE scores recorded in the data set; as a result, the group 
E prediction analyses. The mean and standard deviation of MMSE 
rded scores. 
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operator characteristic (ROC) curve: an aggregate measure 
of model performance across decision boundary thresholds. 
The left-out fold—the test set—was then used to  assess the
model’s performance on unseen data. This process was 
repeated, leaving one fifth of the data out each time, and the 
mean area under the ROC curve calculated by averaging 
across all five folds. 

If linguistic features provide sufficient information 
to distinguish between individuals with and without 
dementia, the average performance of the model should 
be statistically greater than that expected by chance alone. 
To assess this, we permuted the transcript labels 
(impaired vs. healthy control) 1,000 times, so that the 
diagnosis labels were randomly assigned to each partici-
pant, and repeated the entire training and testing proce-
dure, recording the model’s average performance across 
the five folds each time. We then compared the true 
performance to this surrogate null distribution to esti-
mate a p value. If the classification accuracy of the 
model created with the true diagnosis labels was better 
than 95% of those created using the permutated labels— 

corresponding to a p value of .05—it was considered sta-
tistically significant. As with the prediction of MMSE, the 
classification analysis was conducted using two samples: 
(a) only the first available assessments and (b) the full set 
of assessments, including all follow-ups. See Table 3, rows 
3 and 4, for the profile of participants included in these 
analyses. 

Post Hoc Exploratory Analyses 
We performed two post hoc exploratory analyses. 

First, to examine the relationship between individual 
Table 4. Summary of statistical results from each of the multiple linear re
nation scores. 

Model comparison First assess

M1: Demographic M1 adjusted R

M2: Demographic + word-level + context M2 adjusted R

M1 vs. M2 F(17, 106) = 3.36

M1: Demographic + word-level M1 adjusted R

M2: Demographic + word-level + context M2 adjusted R

M1 vs. M2 F(5, 106) = 1.660

M1: Demographic + word-level M1 adjusted R

M2: Demographic + word-level + surprisal M2 adjusted R

M1 vs. M2 F(2, 109) = 3.420

M1: Demographic + word-level M1 adjusted R

M2: Demographic + word-level + filler M2 adjusted R

M1 vs. M2 F(3, 108) = 0.559

Note. Each row lists the base model (M1) and comparison model (M2
and M2 in each row were statistically compared to determine whether t
above those included in the baseline M1. The F and p values reported in
son. Each M1 vs. M2 row refers to the two models defined above it. 

Flick &
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linguistic features and cognitive impairment, simple regres-
sions between each linguistic feature and MMSE score 
were performed, with p values corrected for multiple com-
parisons using the Benjamini–Hochberg false discovery 
rate method. Second, we performed principal components 
analysis on the feature values extracted from the tran-
scripts of dementia patients to examine the latent structure 
underlying the complete set. 
Results 

Prediction of MMSE Scores of Impaired 
Participants From Linguistic Features 

Several multiple linear regression models were con-
structed, using the 12 individual word-level features, five 
novel context features, and three demographic properties 
(age, sex, and education), entered jointly as predictors, to 
predict MMSE scores. For each analysis, we report results 
from (a) only the first available assessments and (b) all 
assessments, including first available and follow-ups, with-
out modeling repeated measures (i.e., each transcript is con-
sidered independently). See Table 4 for a summary of the 
statistical results from the models discussed in this section. 

As shown in Figures 1A and 1B, the complete 
model containing all linguistic and demographic features 
as predictors significantly predicted MMSE scores in 
impaired patients both when considering patients’ first 
assessments (n = 127; adjusted R2 = .254, F(20, 106) = 
3.149, p < .001; see Figure 1A) and also when considering 
first assessments and all follow-ups (n = 176; adjusted
gressions conducted to predict patients’ Mini-Mental State Exami-

ments All assessments 
2 = .011 M1 adjusted R2 = .018 
2 = .254 M2 adjusted R2 = .320 

2, p < .001 F(17, 155) = 5.498, p < .001 
2 = .232 M1 adjusted R2 =. 259 
2 = .254 M2 adjusted R2 =. 320 

, p = .151 F(5, 155) = 3.899, p = .002 
2 = .232 M1 adjusted R2 = .259 
2 = .264 M2 adjusted R2 = .318 

, p = .036 F(2, 158) = 7.94, p < .001 
2 = .232 M1 adjusted R2 = .259 
2 = .223 M2 adjusted R2 = .260 

, p = .643 F(3, 157) = 1.073, p = .362 

), showing which predictors were used in that regression. The M1 
he predictors added in M2 explained additional variance over and 
 the second and third columns are those from the model compari-
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Figure 1. Regression results showing the relationship between true Mini-Mental State Examination (MMSE) scores and predicted MMSE 
scores, for impaired participants. The left column shows regressions computed using only the first available assessments, while the right 
column shows regressions computed using all available assessments. (A, B) The predicted MMSE scores from a model containing all lin-
guistic features, including word-level and the novel context features, as well as demographic properties. (C, D) Predicted scores using only 
the word-level features. (E, F) The predicted scores using only the demographic features (sex, age, years of education). For illustration pur-
poses, each plot includes a line of best fit based on the true and predicted MMSE scores.
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R2 = .320, F(20, 155) = 5.119, p < .001; see Figure 1B). 
Importantly, in both cases, the full model including the 
linguistic variables explained significantly more variance 
than did the baseline model with only demographic prop-
erties as predictors (first visits: F(17, 106) = 3.362, p < 
.001; all visits: F(17, 155) = 5.498, p < .001; models with 
only demographic properties shown in Figures 1E and 
1F). This establishes that our computed set of linguistic 
features can successfully explain a meaningful amount of 
variance in the degree of cognitive impairment, as opera-
tionalized by MMSE scores.

We next asked whether the novel context features 
added a significant amount of explained variance relative 
to the set of demographic and word-level predictors. To 
do so, we compared a model containing the word-level 
and demographic predictors to one containing word-level, 
demographic, and, additionally, context features as predic-
tors. When considering only participants’ first assessment, 
adding the five context features improved the amount of 
explained variance numerically (adjusted R2 = .254 [demo-
graphic + word-level + context features] vs. .232 [demo-
graphic + word-level features]), but this was not a statisti-
cally significant difference, F(5, 106) = 1.660, p = .151. 
When including all assessments, the five context features 
significantly improved MMSE prediction (adjusted R2 = 
.320 [demographic + word-level + context features] vs. 
.259 [demographic + word-level features]); F(5, 155) = 
3.899, p = .002, demonstrating that the set of context fea-
tures captured a significant portion of variance in MMSE 
scores and added explanatory power. 

Since the context properties can be further divided 
into two categories themselves (surprisal-related and filler-
related; see Table 2), we also examined the unique contri-
bution of each category over and above the demographic 
and word-level variables as predictors. Adding median 
surprisal and the interquartile range of surprisal to models 
that contained only the word-level and demographic prop-
erties resulted in significantly better prediction of MMSE 
scores. This improvement was statistically significant when 
considering only the first assessments (adjusted R2 = .232 
[demographic + word-level features] vs. .264 [demographic + 
word-level + surprisal features]; F(2, 109) = 3.420, p = 
.036), as well as when considering all of the assessments 
(adjusted R2 = .259 [demographic + word-level features] 
vs. .318 [demographic + word-level + surprisal features]; 
F(2, 158) = 7.94, p < .001). Adding only the filler-related 
features, however, did not significantly improve prediction 
of MMSE score relative to models that already contained 
the word-level and demographic properties in either case 
(first visits: adjusted R2 = .232 [demographic + word-level 
features] vs. .223 [demographic + word-level + filler fea-
tures]; F(3, 108) = 0.559, p = .643; all visits: adjusted 
R2 = .259 [demographic + word-level features] vs. .260 
Flick & O

Downloaded from: https://pubs.asha.org 45.84.211.144 on 10/22/2025, T
[demographic + word-level + filler features]; F(3, 157) = 
1.073, p = .362). This suggests that while the surprisal of a 
speaker’s words within the larger discourse context captures 
meaningful variance in level of cognitive impairment, in 
both initial and follow-up assessments, the filler-related fea-
tures do not. 

Classification of Impaired Versus Healthy 
Control Participants 

In a second analytical approach, we assessed 
whether the set of linguistic features could be used to 
accurately classify individuals as healthy controls versus 
impaired individuals. A fivefold stratified cross-validation 
was used to train regularized logistic regression models to 
predict the category of each transcript (impaired/control) 
based on the automatically extracted linguistic features, 
excluding the demographic properties. Each model’s per-
formance was evaluated by calculating the area under the 
ROC curve in left-out data. 

The mean area under the ROC curve across all folds 
was 0.871 (SD = 0.035), with a mean classification accu-
racy of 79.2% (SD = 3.29%). A permutation test using 
1,000 random permutations of the category labels demon-
strated that this classification performance was signifi-
cantly greater than what would be expected by chance 
alone (p < .001). For comparison, a model that classified 
every transcript as a healthy participant (the majority 
class) would achieve an accuracy of approximately 51%, 
based solely on the proportion of each class (200 out of 
394 transcripts were from impaired participants). Slightly 
lower but similar model performance was found when 
using only the transcripts from the initial visit, where the 
mean area under the ROC curve was 0.829 (SD = 0.032) 
and the mean accuracy was 75.4% (SD = 8.00%, p < 
.001). This was significantly above the chance level of 
58.3% if classifying every transcript as impaired based on 
the proportion of impaired individuals (130 out of 223 
transcripts). 

In addition to evaluating the models based on accu-
racy and ROC curves, we also explicitly examined the 
model’s performance when prioritizing correct detection of 
impairment versus correct rejection of healthy individuals. 
To do so, we examined precision and recall when we 
shifted the model’s decision boundary, which is the 
amount of evidence necessary for the model to classify an 
individual as impaired, across a range from 0.35 to 0.65 in 
steps of 0.01. Precision refers to the ratio of true positives 
to the total number of predicted positives (i.e., true posi-
tives + false positives) and thus captures what proportion 
of the participants who were predicted to be impaired that 
actually were impaired. Recall refers to the ratio of cor-
rectly predicted (true) positives to the total number of
strand: Contextual Language Features Improve AD Prediction 11
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actual positives (including those that the model incorrectly 
labeled as negative) and thus captures the model’s ability 
to detect impairment (i.e., the proportion of impaired par-
ticipants who were predicted to be impaired). For exam-
ple, if the model predicted all participants to be impaired, 
it would have low precision (because many of the pre-
dicted impaired participants would actually be healthy) 
but high recall (because all impaired participants would be 
correctly predicted as impaired). For ease of interpreta-
tion, we converted both ratios to percentages. 

At the default decision boundary of 0.50, the 
model’s mean precision and recall across the five train-
ing folds were 78.9% and 78.7%, respectively. As 
expected, the model’s recall increased as we decreased 
the decision boundary; see Figure 2. At a threshold of 
0.35, the classification demonstrated a mean recall of 
87.6% (i.e., correct detection of impairment in 170 of 
194 impaired individuals in the current data set) with a 
precision of approximately 73.0%. This demonstrates 
that the current approach could be tailored to increase 
sensitivity (i.e., increasing the recall score), if the failure 
to detect dementia in an impaired person may be con-
sidered of greater consequence than a false positive that 
could be cleared in follow-up consultation with a medi-
cal professional. 
•

Figure 2. Classification of impaired versus healthy control individuals. M
data, as a function of the model’s threshold for classifying an individua
required to classify a participant as impaired. 
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Post Hoc Exploratory Analyses 

To explore the relationship between individual lin-
guistic features and cognitive impairment, Pearson correla-
tion coefficients were calculated between each of the fea-
tures and MMSE score, using the data from all impaired 
participant transcripts (n = 176). All p values were cor-
rected for multiple comparisons using the Benjamini– 
Hochberg false discovery rate method (Benjamini & 
Hochberg, 1995). Two individual word-level features 
showed significant individual correlations with MMSE 
score at an adjusted threshold of p < .01: median lexical 
frequency (r = −.45, p < .001) and proportion of definite 
articles (r = .32, p < .001). One word-level feature implica-
ted in past studies of speech in dementia was significant at 
a threshold of p < .05 after correction: The usage of nouns 
(r = .24, p = .020) and the usage of empty words were 
marginally significant (r = −.21, p = .053). Two novel 
context features were individually correlated with MMSE 
score: median word surprisal (r = −.290, p = .002) and 
the frequency of the next content word after a filler (r = 
−.240, p = .020). These individual correlations suggest 
that individuals with greater impairment (i.e., lower 
MMSE scores) produce more frequent yet more surprising 
words, make greater usage of empty words, and use nouns 
and definite articles less frequently (see Figure 3).
odel precision and recall are shown, averaged across five folds of 
l as impaired. A lower decision threshold means less evidence is 
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Figure 3. Individual linguistic features that significantly predicted Mini-Mental State Examination (MMSE) scores. Significant individual Pearson 
correlations were observed between MMSE score and the individual word-level features: (A) median log frequency, (B) use of definite articles, 
and (C) usage of nouns. A marginally significant relationship was found between usage of (D) empty words and MMSE. Two novel context fea-
tures showed significant correlations with MMSE score: (E) median word surprisal and (F) the mean frequency of content words that followed a 
filler. For illustration purposes, each plot includes a line of best fit based on the feature and MMSE score. 
Lastly, we used principal components analysis 
(PCA) to examine the latent structure underlying the set 
of linguistic features automatically extracted from the 
impaired patients’ data. Three components were found to 
together explain approximately 53% of the variance in the 
set of features (26.0%, 16.6%, and 10.3%, respectively), 
with subsequent components each explaining approxi-
mately 7% or less. As shown in Table 5, the first compo-
nent weighted heavily on a set of features that included a 
higher total number of words, lower type–token ratio, and 
greater use of content words and verbs. Component 2 was 
Flick & O
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associated with lower overall lexical frequency and lower 
lexical frequency after filler words, as well as fewer empty 
words, more definite articles and nouns, but (to lesser 
degree) fewer pronouns. Component 3 was unique in its 
clear weighting on context measures, with higher lexical 
surprisal (median surprisal and interquartile range), along 
with higher lexical richness measured by Honoré’s statistic 
and reduced usage of fillers. Component 1 was marginally 
significantly correlated with MMSE score (ρ = 0.146, p = 
.053), and Components 2 and 3 were both significantly 
correlated with MMSE (Component 2: ρ = 0.382, p <
strand: Contextual Language Features Improve AD Prediction 13
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Table 5. The set of linguistic features and loadings on each of the first three principal components (PCs). 

Feature class Feature name PC1 PC2 PC3 

Word-level Total words 0.448 0.028 0.070 

Fillers† 0.150 −0.034 0.391 

Empty words† 0.176 −0.309 0.087 

Definite articles† 0.153 0.446 −0.163 
Indefinite articles† 0.147 −0.019 0.027 

Pronouns† 0.316 −0.293 0.064 

Nouns† 0.258 0.393 0.189 

Verbs† 0.364 −0.189 0.012 

Content words† 0.410 0.046 0.197 

Lexical frequency −0.019 −0.500 0.040 

Type–token ratio −0.378 −0.097 0.240 

Honoré’s statistic −0.253 0.020 0.364 
Context: Fillers Content word frequency after filler 0.074 −0.316 −0.050 

Distance to next content word −0.048 −0.107 0.228 

Surprisal after filler −0.027 0.077 0.051 

Context: Surprisal Median surprisal −0.130 0.030 0.562 
IQR of surprisal 0.030 0.077 0.404 

Note. Features loading above an absolute value of 0.300 is marked in bolded font. Features marked with † are those normalized by the 
square root of the total number of words. IQR = interquartile range. 
.001; Component 3: ρ = −0.177, p = .019). Thus, Compo-
nent 1 can be interpreted as demonstrating that people 
with greater impairment produce speech with fewer 
content-bearing words. Component 2 captures the pattern 
that people with greater impairment produce less specific 
language: fewer specific nouns and definite articles and 
more pronouns and empty words, as well as higher fre-
quency words (which tend to be less specific and precise). 
Finally, Component 3 can be interpreted as showing that 
participants with greater impairment produce words that 
are more surprising (i.e., less predictable) within the con-
text and more filler words. 
Discussion 

Linguistic changes in AD and other forms of 
dementia have been well documented (e.g., Ahmed et al., 
2013; Mueller et al., 2016; Mueller, Hermann, et al., 
2018), indicating the potential of language-based screening 
methods for improved detection of dementia. Here, we 
examined two new sets of features, which take into 
account the discourse context that words are produced in, 
for predicting MMSE scores as a proxy of dementia sever-
ity in patients with probable or possible AD. These novel 
features sets were (a) properties of words that immediately 
followed the occurrence of a filler (e.g., he is um reaching) 
and (b) the surprisal (i.e., unexpectedness/predictability) of 
individual words given those that preceded them. 

We began by demonstrating that an encompassing 
set of linguistic features—including 12 features selected 
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from prior findings as well as five novel context features— 

could jointly predict MMSE scores in AD patients, per-
forming better than models that used demographic proper-
ties alone. We demonstrated these linguistic features’ utility 
both in inferring a continuous score that is expected to 
decrease, on average, with participants’ dementia severity 
and in performing binary classification to detect whether a 
participant was in the healthy or impaired group. Next, we 
showed that novel context properties explained a significant 
proportion of variance in MMSE scores, suggesting that 
inclusion of these linguistic properties could improve 
speech-based screening methods for dementia due to AD, 
including earlier in disease progression. 

We specifically examined the relevance of two sub-
groups of the novel context features: those characterizing 
the participant’s use of fillers (surprisal and frequency of 
words following a filler, and distance to the next content 
word) and those characterizing the surprisal of the partici-
pant’s lexical production (median surprisal across all 
words, interquartile range of surprisal). While the new 
filler-related features did not explain a significant propor-
tion of variance in MMSE score beyond what was cap-
tured by the previously attested word-level properties, the 
surprisal features significantly improved model perfor-
mance. Moreover, median surprisal was individually nega-
tively correlated with MMSE score, suggesting that with 
greater cognitive impairment due to AD, individuals 
tended to deviate further from the language model’s statis-
tical predictions of what words would be said next. 
MMSE scores also showed positive relationships with the 
usage of nouns and definite article determiners, and
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negative relationships with empty words and median lexi-
cal frequency. 

These findings provide novel evidence that the incre-
mental surprisal of Alzheimer’s patients’ words in con-
nected speech explains unique variance in cognitive impair-
ment (i.e., degree of dementia severity), as can be approxi-
mated by MMSE scores, and beyond that explained by 
previously examined properties (e.g., word frequency, num-
ber of nouns) that have been the focus of past work. That 
is, the language produced by people who are more 
impaired is less predictable based on the preceding linguis-
tic context. This suggests that with greater cognitive 
decline, individuals with AD produce more empty words, 
fewer nouns and definite articles and tend to use more 
common yet also more surprising words in picture descrip-
tions. Together, this constellation of impairments in lan-
guage production suggests that AD leads to language with 
reduced semantic specificity, as these linguistic deficits all 
result in the production of less specific and content-heavy 
words (i.e., emptier words, more common words, words 
that fit less well within the ongoing context, and fewer 
nouns and definite articles to pick out specific as opposed 
to more generic referents). 

The Relationship Between Frequency, 
Surprisal, and Cognitive Impairment 

These results demonstrate a curious pattern regard-
ing the relevance of both surprisal and frequency in pre-
dicting MMSE scores. Several previous studies have 
reported that the median or mean lexical frequency of 
words produced by patients with AD or other forms of 
dementia or MCI is higher than that observed in the 
speech of cognitively unimpaired individuals (H. Bird 
et al., 2000; Fraser et al., 2015; Kavé & Goral, 2016; 
Ostrand & Gunstad, 2021), which was also shown in the 
current results. Past work has theorized that this is due to 
an underlying impairment in lexical access—the process of 
retrieving words from memory to produce them in speech 
(Burke & Shafto, 2008)—that may be attributed to degra-
dation of medial temporal lobe and temporoparietal areas 
in dementia (Whitwell et al., 2007). This impairment is the-
orized to result in higher average word frequency in 
patients’ connected speech because more common words 
are less effortful to retrieve from one’s mental lexicon. 
Here, we provide what we believe is the first evidence that 
a related variable—lexical surprisal—captures additional 
variability in cognitive impairment in individuals with AD. 

Devoid of sentential context, the frequency of a 
word should be inversely proportional to its surprisal, as 
more common words are less surprising on their own (i.e., 
they carry fewer bits of information). A natural inference 
may thus be that individuals with greater cognitive decline 
Flick & O
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would show reduced lexical surprisal in their speech, due 
to the increased lexical frequency of the words they pro-
duce. However, in the current work, we found negative 
relationships between MMSE scores and both frequency 
and surprisal; that is, language production from individ-
uals with lower MMSE scores tended to display higher 
median frequency (as in prior studies) and yet also higher 
median surprisal. On the other hand, frequency and sur-
prisal were not significantly correlated across patient tran-
scripts (r = −.045, p = .538) and the relationship between 
surprisal and MMSE score remained significant after par-
tialing out the relationship between MMSE and frequency 
(partial correlation, p < .001). Moreover, the two vari-
ables dissociated on orthogonal dimensions in the PCA 
decomposition (see Table 5). Together, the current find-
ings suggest that lexical surprisal predicts degree of cogni-
tive impairment (as operationalized by MMSE score) sep-
arately from the relationship with lexical frequency found 
in previous work. 

To better understand what may be driving the rele-
vance of lexical surprisal, we examined the points in individ-
ual transcripts where surprisal was higher than the 75th per-
centile. A clear pattern emerged: Words with particularly 
high surprisal were often incomplete, corrected, or repeated 
(e.g., “There’s a  lit-, a girl, young girl . . .  ”; underlined words  
are those with high surprisal). Qualitative inspections also 
suggested that high surprisal words tended to appear after 
word choice errors, as in “ . . .  they’re grading, uh they, they 
are going to um get some cookies . . .  ”. In this example, the 
speaker mistakenly describes children who are grading, 
despite no depiction of this in the image. Both grading and 
cookies have high estimated surprisal, presumably because 
the former is a mistake and unexpected given the statistics of 
language usage (children do not often grade), while the latter 
is unexpected given the previous sentential context that 
describes grading (a less surprising noun in this context may 
be pencils). 

This example highlights that our operational defini-
tion of surprisal may be capturing the contextual rele-
vance of not only one’s word choices but also an individ-
ual’s ability to produce coherent, error-free speech. This 
effect may result from the fact that the GPT-2 language 
model was trained primarily on written language, from 
over 8 million online documents. Because one can revise 
written language before publishing it, these documents 
likely contain fewer word choice errors and repetitions 
than is typical of spoken language. Indeed, past research 
has found that individuals with a heightened risk for AD 
or with very early mild cognitive impairment show 
reductions in speech fluency in their connected speech 
(Mueller, Koscik, Hermann, et al., 2018), which might 
(partially) account for increased linguistic surprisal in 
discourse production.
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An important related measure, borrowed from apha-
sia research, which also captures the typicality of lexical 
production in connected speech, is known as core lexicon 
analysis. For a given speech elicitation task—most com-
monly a picture description or procedural narrative—core 
lexicon items are determined by collecting discourse sam-
ples from healthy control participants and collating the 
words that are produced across participants (Dalton et al., 
2020; Dalton & Richardson, 2015). Thus, core lexicon 
analysis provides a set of expected words for a particular 
speech elicitation task, and a patient’s transcript can be 
compared against this normed list to provide a score of 
how “typical” their word production is. The linguistic sur-
prisal metric in the current work is a way of operationaliz-
ing a similar underlying measure as core lexicon—that of 
the expectedness or typicality of the words produced by 
the participant—but has the advantage that its use is not 
restricted to the small number of constrained speech tasks 
for which core lexicon standards have been developed. It 
also does not require the collection and hand-coding of an 
additional set of norming data from participants perform-
ing the same speech tasks. On the other hand, core lexicon 
analyses use a corpus built from connected speech from 
healthy participants for a particular picture description 
and thus may be more uniquely targeted to the individual 
elicitation task by providing a measure of the typicality of 
an individual’s words in a very precise context, whereas 
our surprisal metric uses a corpus built from vast troves 
of generic language on the internet. 

An interesting direction for future work would be to 
examine the degree to which these two approaches—core 
lexicon analysis and computationally derived linguistic 
surprisal—may be capturing the same underlying cognitive 
and linguistic changes in dementia. Initial research has 
shown that patients with MCI and/or AD display deficits 
in producing core lexicon items in picture description tasks 
as well (Chen et al. 2025; Kintz et al. 2024), adding sup-
port to the relevance of surprisal as a linguistic property 
for detecting MCI and AD. 
Comparisons to Past Work 

Previous attempts to use linguistic features to clas-
sify individuals as patients with dementia or healthy con-
trols have demonstrated accuracies that range from 
approximately 75% up to 90%–95% correct (e.g., Bucks 
et al., 2000; Guinn & Habash, 2012; Jarrold et al., 2014; 
Meilán et al., 2014; Thomas et al., 2005). Two studies 
have done so using the same DementiaBank Pitt data set 
that we employed here and, thus, the same distinction 
between AD patients and healthy controls (although par-
ticipant exclusion may have varied). Orimaye et al. (2014) 
compared the performance of various machine learning 
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algorithms tasked with classifying the impaired and 
healthy control participants based on a relatively restricted 
set of features that included syntactic properties (e.g., 
number of predicates, number of coordinated sentences) 
and select lexical properties (e.g., number of function 
words, unique words, repetitions, and morphemes). They 
found that support vector machines trained on these fea-
tures could classify the individuals with an F-measure 
score (the harmonic mean of recall and precision) of 74%. 
Fraser et al. (2015), on the other hand, considered 370 
features derived from the speech transcripts and the audio 
recordings of the participants’ picture descriptions and 
assessed the performance of logistic regression models that 
included increasing numbers of those features, from one 
to 370. Their peak classification accuracy was approxi-
mately 82%, which was observed when using 35 of the 
features. 

Our results are similar to those obtained in these 
prior studies, with a mean area under the ROC curve of 
0.871 and a mean accuracy of 79.2% when using a stan-
dard decision boundary. Our observed area under the 
ROC curve is also within a reasonable range of that 
reported for the MMSE itself in detection of cognitive 
impairment and dementia (0.890; for comparison, the 
Modified Mini-Mental State Exam has a reported area 
under the ROC curve of 0.930; McDowell et al., 1997), 
but this should be interpreted with caution as the evalua-
tion samples may differ in the severity and progression of 
disease. The small reduction in accuracy that we observe, 
relative to the results of Fraser et al. (2015), may be 
attributable to the data-driven feature selection and itera-
tion process that those authors adopted, which enabled 
them to identify the most informative number and set of 
features from a much larger number of candidates. Here, 
we took a hypothesis-driven approach for choosing a 
smaller set of features, using only the speech transcripts, 
and made novel contributions by demonstrating that com-
putational language models can produce features relevant 
for characterizing human language production to predict 
the degree of cognitive impairment in AD (i.e., the rela-
tion between surprisal and MMSE score). This motivates 
future work that could combine these models with auto-
mated feature-selection pipelines to identify those features 
that are most informative, similar to the approach 
employed by Fraser and colleagues. These models would 
jointly benefit from the inclusion of the new features 
that we have demonstrated are relevant—namely, lexi-
cal surprisal—and the  data-driven feature  selection pro-
cess used by Fraser et al. to obtain peak classification 
performance. 

Finally, in addition to reporting area under the ROC 
curve values and accuracies, we also examined precision, 
recall, and the impact of moving our model’s decision
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boundary to differentially weight true versus false positives. 
When increased recall was prioritized (the ratio of correctly 
predicted positives to the total number of actual positives), 
our model could, on average, identify approximately 87% 
of patients with AD. This highlights that the current 
approach could be tailored to function as a warning system 
that prioritizes sensitivity, which may be particularly useful 
for individuals who have a heightened risk of developing 
AD due to family history or other reasons. 
Toward Future Speech-Based Models for 
Dementia Detection 

There is a growing need for more accessible demen-
tia screening systems, which do not require substantial 
time, travel, or financial resources for patients to access 
(Bayly et al. 2020; Bradford et al., 2009; Wilson et al., 
2023). The collection and analysis of spoken language is 
one such promising method. Once speech samples have 
been collected, there are two analysis steps that have tradi-
tionally relied on time-consuming manual effort, namely, 
the transcription of spoken language to text and the com-
putation of relevant features. While the data set in the pres-
ent work was created using manual speech transcription, 
ongoing advances in automatic speech recognition sug-
gest that this step could be partly or fully automated 
soon (e.g., Coto-Solano et al., 2021). For example, recent 
work (Liu et al., 2023) has used the TalkBank databases 
to develop and validate a largely automated transcription 
pipeline for converting raw audio input into speech tran-
scripts in the CHAT format, which facilitates subsequent 
analysis. Others have compared automated and manual 
speech transcription methods for the extraction of lin-
guistic features and found similar accuracies when using 
the resulting features to classify AD patients from 
healthy controls (Sadeghian et al., 2021; see Li et al., 
2024, for related work). Importantly, all the linguistic 
features that were used in the current work were 
extracted and computed automatically from speech tran-
scripts, with no manual annotation required. This 
includes the surprisal-based features developed in this 
work, which, our results suggest, should be included in 
future models that aim to detect AD in earlier disease 
stages and/or predict cognitive decline. 

This is, as far as we know, the first study to consider 
the relationship between lexical surprisal and cognitive 
status in dementia. One reason may be that, until 
recently, surprisal was a difficult metric to compute auto-
matically. Traditionally, when analyzing language pro-
duction, word probability was computed using cloze 
probability norming, a method wherein a separate norm-
ing sample of participants are given an incomplete sen-
tence and guess what word will appear next (e.g., The 
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man put on his ____; Taylor, 1953). This approach 
requires substantial resources and time, as norming par-
ticipants would need to guess each word in every tran-
script. Here, we circumvent this manual effort by taking 
advantage of advances in computational language model-
ing and the widespread availability of pretrained large 
language models. Using one such model and relying on 
its statistical “knowledge” of the English language, 
derived from training on millions of documents, we can 
automatically estimate the contextual probability of each 
word in a transcribed speech sample. We note that the 
current work is only an initial step toward using these 
models to improve speech-based screening tools and 
many open questions remain. For example, the current 
work employed the GPT-2 language model to derive the 
lexical predictions for computing surprisal. However, the 
field of large language models is moving rapidly, and 
already the suite of computational language models has 
greatly expanded and been refined with new training data 
(e.g., GPT-4, Llama). While most of these models have 
been trained on written language, they could be fine-
tuned using corpora of transcribed, spoken language, 
which may improve their ability to detect deviations 
from expected speech patterns. This future research will 
be facilitated by the continued public availability of pre-
trained models. 
Limitations and Future Directions 

The present approach employed one computational 
language model, GPT-2, to estimate the incremental prob-
ability of individual words in the speech stream. Although 
this model was deliberately chosen due to various proper-
ties of its training, and correlations with real human lan-
guage behavior, we do not wish to claim that GPT-2 is 
the best model to derive these probabilities for the pur-
poses of predicting cognitive impairment. A natural line 
for future work will be to test linguistic features derived 
from different computational language models and modify 
their associated parameters (e.g., window size), to deter-
mine how these variables affect performance when predict-
ing degree of cognitive impairment in dementia patients. 

The current work is also limited due to our reliance 
on the precollected DementiaBank data set (Becker et al., 
1994). This publicly available data set is the only one of 
its kind and is a uniquely valuable hypothesis testing 
ground for several reasons, including its large sample size 
(an order of magnitude larger than the sample size in 
many similar studies) and the diversity of MMSE scores 
among the AD patient sample. It does not, however, pro-
vide researchers with comprehensive patient descriptions 
that could better inform our understanding of how linguis-
tic changes relate to disease progression. In the present
strand: Contextual Language Features Improve AD Prediction 17
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work, we relied exclusively on the original authors’ classi-
fication of patients as “Probable” or “Possible” AD cases 
and operationalized their degree of impairment using per-
formance on the MMSE (Folstein, Folstein, & McHugh, 
1975). Although MMSE performance is expected to 
decrease with greater impairment in dementia patients, it 
is ultimately only a screening tool and should not be used 
as a singular diagnostic tool (Tombaugh & McIntyre, 
1992), as it has been found to vary considerably in its 
accuracy and sensitivity (Arevalo-Rodriguez et al., 2015, 
2021; see earlier discussion in Data Set section). Future 
work should thus examine speech patterns in more pre-
cisely defined subclasses of dementia patients and use 
more comprehensive and updated neuropsychological 
evaluations as measures of impairment.  This  may be par-
ticularly fruitful in longitudinal studies that also quantify 
alterations in cortical microstructure, which can occur 
before overt brain atrophy is observed (Illán-Gala et al., 
2019; Spotorno et al., 2023). These noninvasive methods 
have been shown to distinguish mild cognitive impair-
ment and AD from typical aging, with localized differ-
ences between patients and healthy controls found in 
brain regions known to support language function (Vogt 
et al., 2020). If combined with regular speech assessments 
and thorough neuropsychological evaluations, such stud-
ies could improve our understanding of how speech 
changes relate to the underlying disease progression. 

Another limitation of the current work concerns our 
reliance on the picture description task data available in 
the public data set. This task places a stimulus in front of 
each participant and asks them to describe what is 
depicted. As such, perception and memory demands are 
intertwined, as participants need to perceive and identify 
the objects and entities that make up the depicted scene, 
retrieve their names from memory, and then produce 
structured propositions that describe those entities and the 
depicted relations between them. While picture description 
tasks have been shown to have predictive power for future 
cognitive impairment, recent findings also suggest that 
linguistic features derived from alternative speech tasks, 
such as asking participants to describe a time or place in 
their life that is meaningful to them, may provide better 
predictive performance (Ostrand & Gunstad, 2021). 
Related work, which has examined speech collected in 
autobiographical interviews (Levine et al., 2002), has 
also shown that patients with AD and mild cognitive 
impairment produce fewer episodic memory details in 
expository speech as compared to healthy age-matched 
controls (Simpson et al., 2023). This raises another inter-
esting question for future work, regarding whether dif-
ferent linguistic features best predict impairment when 
calculated from utterances describing episodic versus 
semantic information. 
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Conclusions 

The current work makes three contributions to our 
understanding of linguistic changes in AD, the relation-
ship between these changes and degree of cognitive 
decline, and the advancement of spoken language-based 
tools for the detection of AD. First, we have demon-
strated that both word-level and contextually based prop-
erties of language can accurately predict AD patients’ 
MMSE scores, which are expected to decrease with 
greater degree of cognitive decline. Second, we have shown 
that these features can be used to accurately classify 
patients with probable or possible AD versus healthy 
control participants, with correct detection of impair-
ment reaching approximately 87% based on linguistic 
features alone. Finally, we have provided new evidence 
that linguistic surprisal—a contextual measure of how 
coherent or unexpected an individual’s word choices are 
given the prior context—explains a unique proportion of 
variance in MMSE scores in AD patients, beyond that 
captured by many previously studied properties of lan-
guage. This result suggests that linguistic surprisal 
should be studied and incorporated into future research 
that examines linguistic changes in dementia along the 
clinical staging for individuals on the AD continuum 
(Jack et al., 2024), as well as other forms of dementia, 
and particularly in longitudinal studies that can further 
assess its usefulness in early detection of disease. Overall, 
our results demonstrate that more severe dementia from 
AD leads to the production of more frequent yet more 
surprising words, greater use of empty words, and a 
reduced use of nouns and definite articles. We also fur-
ther demonstrate that the automatic computation of 
properties of spontaneous speech can be an effective and 
low burden way of detecting and monitoring cognitive 
decline in AD. 
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