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Abstract

Large language models (LLMs) are susceptible to generat-
ing inaccurate or false information, often referred to as “hal-
lucinations” or “confabulations.” While several technical ad-
vancements have been made to detect hallucinated content by
assessing the factuality of the model’s responses, there is still
limited research on how to effectively communicate this in-
formation to users. To address this gap, we conducted two
scenario-based experiments with a total of 208 participants to
systematically compare the effects of various design strate-
gies for communicating factuality scores by assessing partic-
ipants’ ratings of trust, ease in validating response accuracy,
and preference. Our findings reveal that participants preferred
and trusted a design in which all phrases within a response
were color-coded based on factuality scores. Participants also
found it easier to validate accuracy of the response in this
style compared to a baseline with no style applied. Our study
offers practical design guidelines for LLM application devel-
opers and designers, aimed at calibrating user trust, aligning
with user preferences, and enhancing users’ ability to scruti-
nize LLM outputs.

1 Introduction
Large language models (LLMs) can generate factually in-
correct or fabricated information that appears plausible and
is presented with confidence – a phenomenon widely known
as “hallucination” (Ji et al. 2023). This behavior is also
described as “confabulation” (Smith, Greaves, and Panch
2023), or more bluntly, “bullshit” (Hicks, Humphries, and
Slater 2024)1. The presence of these hallucinations in LLM
outputs, coupled with difficulty in detecting them and users’
tendency to over-trust LLMs (Bo, Wan, and Anderson 2024;
Kim et al. 2024), has led to several high-profile incidents.
For example, lawyers have been reprimanded by judges for
referencing hallucinated case law (Sloan 2023), new prod-
ucts have been rapidly shelved due to hallucinated scientific
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1In this paper, we use the term “hallucination” to encompass all
these concepts; while “confabulation” may be more precise, “hal-
lucination” is more broadly recognized.

references (Ryan 2022), news outlets have had to issue cor-
rections to articles written with AI assistance (Sato and Roth
2023), and company share prices have dropped after a hallu-
cination caused a blunder during a new product demo (How-
ell 2023). In response, some communities have prohibited
the use of LLM-generated content to safeguard against the
inclusion of hallucinated information, such as StackOver-
flow, an online Q&A forum (Stack Overflow 2025).

Researchers are actively exploring ways to mitigate hal-
lucinations by improving datasets and employing tech-
niques such as reinforcement learning with human feed-
back (Ouyang et al. 2022; Ji et al. 2023) and retrieval-
augmented generation (Lewis et al. 2020; Cai et al. 2022).
However, technical advancements alone cannot completely
resolve the issue; ultimately, it falls upon end-users to care-
fully evaluate LLM outputs and be accountable for their use.

Presenting factuality scores, which indicate the extent to
which a model’s response is truthful to a source document
(Kryściński et al. 2020; Laban et al. 2022; Maynez et al.
2020; Zhou et al. 2023; Chern et al. 2023; Min et al. 2023),
presents a promising human-centered solution to help users
in evaluating LLM outputs. (Although definitions of “fac-
tuality” vary slightly in the field, we use it here to refer
to truthfulness with respect to a source document which is
considered factual information.) Nevertheless, the best way
to communicate factuality information to users remains un-
clear. As a first step, Leiser et al. (2023) conducted participa-
tory workshops where participants brainstormed design fea-
tures to help identify hallucinations in LLM outputs. They
found that participants desired either numerical factuality
indicators (e.g., percentage) or ordinal factuality indicators
(e.g., high, medium, low) with visual aids, such as color-
coded underlines to differentiate between factual and fic-
tional arguments. However, no studies have systematically
compared the effectiveness of different strategies in helping
users comprehend the accuracy of the model’s response and
calibrate their trust while aligning with their preferences.

Our research aims to identify the most effective strategy
for communicating the factuality of an LLM’s response. We
address the following research questions:
1. Trust: Which designs foster user trust in the model?
2. Ease of validation: Which designs facilitate validation
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of the factuality of the model’s response?
3. Preference: What are the most preferred designs?
We approached these research questions in three phases:

• Design Exploration (Section 3): We conducted a design
review and a pilot study to evaluate different design op-
tions and selected a subset of those designs.

• Experiment 1: Evaluative Study (Section 4): We con-
ducted a controlled scenario-based study to evaluate six
design strategies for representing factuality scores.

• Experiment 2: Replication Study (Section 5): We
conducted a conceptual replication study (Derksen and
Morawski 2022) to investigate whether the Experiment 1
findings generalize to different scenarios.

In the two experiments, participants were shown a color
scale for conveying factuality scores, along with three styles
for visualizing factuality scores within an LLM’s response:
(1) highlight-all, which annotates all linguistic content in
the LLM response with varying background colors based on
its factuality score, (2) highlight-threshold, which annotates
only those parts of the LLM response where the factuality
score is below a given threshold, and (3) score, which shows
the numeric factuality score associated with each part of the
response. Factuality scores were evaluated at two levels of
linguistic granularity – phrase and term – and the three fac-
tuality styles were presented at each level of granularity.

We then conducted two experiments to compare the ef-
fects of these design strategies in question-answer scenar-
ios. We investigated their effects on participants’ ratings of
trust, ease of evaluating response accuracy, and preference
rankings. In both experiments, participants had the highest
preference ratings for the highlight-all style at a phrase-level
granularity. Participants found it easier to validate the ac-
curacy of an LLM’s response in this style compared to a
baseline in which no style was applied. Moreover, display-
ing factuality scores led participants to increase their trust.
Our paper makes three contributions:
1. We explore the design space for presenting factuality

scores to users and identify a set of promising approaches
for in-depth evaluation based on user feedback.

2. We find that design strategies significantly impact ratings
of trust, ease of accuracy validation, and preference.

3. We offer practical guidance on how to effectively com-
municate factuality within the user interface of LLM-
based applications.

2 Related Work
2.1 LLM Hallucination and Factuality Detection
The widespread usage of LLMs in society has highlighted
their risks and limitations. Notably, these models can gener-
ate text that appears plausible at first glance but actually con-
tains factually incorrect information, a phenomenon referred
to as “hallucination” or “confabulation.” In contrast, factual-
ity is defined as “truthfulness or the quality of being based on
fact” (Ji et al. 2023). A related concept is faithfulness, which
pertains to how well an LLM-generated response is consis-
tent with the ground truth source. In this study, we assume a

reliable source as our basis for “fact” so that faithfulness has
the same meaning as factuality (Maynez et al. 2020). If the
model’s response aligns with the information from a reliable
source, it is factually correct.

Hallucinations in LLMs stem from various factors such
as noisy, biased, and erroneous training data, as well as
the model itself. Researchers have addressed data-related is-
sues by establishing ground truth data through human an-
notators and enhancing model inputs with external knowl-
edge (Ji et al. 2023; Huang et al. 2025; Wang et al. 2024;
Honovich et al. 2022). Efforts to enhance the model include
refining the architecture (e.g., retrieval augmented genera-
tion, known as RAG; Lewis et al. 2020), improving the train-
ing process (e.g., reinforcement learning with human feed-
back, or RLHF; Bai et al. 2022), and post-processing (Chen
et al. 2021). Each of these approaches has limitations. For
instance, RAG can make statements that are not fully sup-
ported by cited sources, and may reduce the diversity of re-
sponses (Liu, Zhang, and Liang 2023). RLHF requires sig-
nificant human labor, time, and emotional toll to refine the
model (Metz 2023; Hao and Seetharaman 2023). Given that
these algorithmic approaches cannot fully ameliorate prob-
lems caused by hallucinations, in the present work, we take
a human-centered perspective, emphasizing that it is the re-
sponsibility of end-users to carefully evaluate and take ac-
countability for their use of LLM outputs.

As part of the effort to assist end-users in evaluating
LLM responses, ongoing research has focused on develop-
ing methods to score the factuality of LLM outputs (Laban
et al. 2022; Maynez et al. 2020; Zhou et al. 2023; Chern et al.
2023). These methods can either use lexical matching-based
metrics relying on hard-coded logic or model-based met-
rics using neural networks. Lexical matching-based metrics,
such as BLEU (Papineni et al. 2002), METEOR (Baner-
jee and Lavie 2005), and ROUGE (Lin 2004), measure
factuality automatically by assessing the lexical overlap be-
tween the source text and the model’s response. In contrast,
neural network-based metrics, including BERTscore (Zhang
et al. 2019), BLEURT (Sellam, Das, and Parikh 2020), and
FActScore (Min et al. 2023), have gained popularity due to
their resilience against lexical, syntactic, and semantic dif-
ferences between the source and the model’s output. More-
over, task-specific model-based metrics such as ANLI (Nie
et al. 2020), SummaC (Laban et al. 2022), and QuestEval
(Scialom et al. 2021) – which are based on canonical nat-
ural language understanding tasks such as natural language
inference, abstractive summarization, and question genera-
tion – have shown promising directions for evaluating the
factuality of the LLM response.

This growing body of research raises new questions
for LLM developers and designers on how to effectively
communicate factuality information to end-users. Currently,
there are no established guidelines on which parts of an
LLM’s response should be annotated with factuality infor-
mation, in what visual style, and at what level of linguistic
detail. Furthermore, we have limited understanding of how
the communication of factuality information mitigates the
effects of hallucination and calibrates end-users’ trust.
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2.2 Calibrating End-User Trust for AI Systems
Successful human-AI collaboration requires a user to mod-
ulate their level of trust according to the true reliability
of the AI system. This process is known as trust calibra-
tion (Lee and See 2004; Wischnewski, Krämer, and Müller
2023; Zhang, Liao, and Bellamy 2020). Miscalibrated trust
can result in overreliance, where users accept incorrect AI
recommendations, or underreliance, where they reject cor-
rect recommendations from the AI.

For example, Kim et al. (2023) asked end-users of an
AI-based bird identification app about their trust and trust-
related behaviors. The authors found that while people gen-
erally trusted the app, they did not accept its outputs as true
every time they used the app, and carefully evaluated the
outputs. If they were not able to verify the outputs due to
lack of domain knowledge, participants disregarded the out-
puts. This indicates a disparity between user trust and ease
of validating accuracy. In this study, we further investigate
both concepts in the context of LLM interactions.

In human-human communication, uncertainty may sig-
nal transparency and honesty to a conversational part-
ner (van der Bles et al. 2019). Similarly, in LLM interac-
tions, communicating factuality scores or related concepts
(e.g., uncertainty, confidence score) of LLM outputs can in-
crease AI transparency (Liao and Vaughan 2023) and im-
prove trust calibration (Zhang, Liao, and Bellamy 2020).
Vasconcelos et al. (2023) indicated that highlighting uncer-
tain tokens can assist programmers in identifying potential
errors, leading to more focused edits and greater satisfac-
tion among study participants. Weisz et al. (2021) explored
a similar technique and found that confidence scores pos-
sessed explanatory power, although an analysis by Agarwal
et al. (2020) found no correlation between the model’s confi-
dence scores and the presence of actual programming errors.
Leiser et al. (2023) found that end-users expressed a desire
for visual aids such as color codes to communicate the fac-
tuality of LLM responses, which has inspired our study. The
present work builds on this prior research and compares the
effects of various design strategies for communicating the
factuality of a model’s response.

3 Design Exploration
To develop our initial designs to present factuality scores for
LLM-generated outputs, we drew inspiration from existing
commercially available applications, including OpenAI’s
WebGPT and Microsoft’s Bing Chat. We observed that fac-
tuality information was generally presented through high-
lights (Yue et al. 2023; Gao et al. 2023; Leiser et al. 2023)
or scores (Li et al. 2023). In reviewing these applications,
we observed that factuality information could be computed
at different levels of granularity, such as at the term, phrase,
or whole-response levels. Vasconcelos et al. (2023) reported
that users had negative reactions to the whole-response level
of granularity and found it unhelpful for identifying errors
and felt it was difficult to interpret. Therefore, we did not
include the whole-response granularity in the present study.

We conducted a pilot study with ten participants to iden-
tify preferred options in the design space. This study led to

the selection of six designs for representing factuality scores,
as described in the following sections. We then ran two con-
trolled experiments to evaluate these different designs.

4 Experiment 1
4.1 Participants
We recruited 104 participants for this experiment, all of
whom were employees of IBM, a large multinational tech-
nology company. Our goal was to enroll diverse participants
in terms of geography, job role, English proficiency, and ex-
perience with AI, machine learning, and LLMs. We adver-
tised the participant recruitment widely within the company
on internal Slack channels from multiple divisions and ge-
ographic regions. The participants were located in 20 dif-
ferent countries, with the largest representation (51%) from
the United States. Their job roles encompassed various dis-
ciplines, including design, customer service, engineering,
sales, research, and human resources. Participants reported
a significant range of experience with LLMs, with 18.2%
indicating they had never used an LLM and 9.6% reporting
daily usage (see Do et al. 2025 Figure A.1(a) for more fine-
grained responses).

The experiment was conducted in English, and we strove
to recruit participants with varying degrees of English ex-
posure and proficiency to capture the experience of people
who interact with LLMs in a non-native language. As such,
56% of participants reported that they were exposed to En-
glish from birth, 27% before age 7 (often considered the end
of the critical period for learning a language to native-level
proficiency; Johnson and Newport 1989), and 17% after age
7. Participants also self-reported their English proficiency
on a 7-point Likert scale, with 68% rating themselves at 7
(native or native-like proficiency), 19% at 6, 8% at 5, 4%
at 4 (medium), and 1% at 3. All participants provided writ-
ten informed consent, and were treated in accordance with
guidelines for the ethical treatment of human participants.

4.2 Procedure
The experimental instructions told participants to imagine
themselves as users of an AI-powered language model, and
were shown a Question, a Response, and a Source. Their
task was to evaluate different designs for showing the fac-
tuality of the model’s Response, based on the provided
Source. The Question was explicitly non-technical to allow
all participants, regardless of background or expertise, to as-
sess its accuracy using the source information, and asked,
“What movies did Beyonce star in and with whom?” The
Source was an edited and condensed text pulled from the
Wikipedia article about Beyonce, and participants were in-
structed to assume that the source was factually accurate.
The Response was manually written (i.e., not actually gener-
ated by a model) to have a mixture of inaccurate statements
which contradicted the source text, and accurate statements.
Overall, the Response was approximately equal parts accu-
rate and inaccurate information.

Participants were shown several design strategies to eval-
uate. Each design strategy was presented using the same
Question, Response, and Source text, to hold constant the
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Figure 1: The baseline design was shown to participants at the start of the experiment, with no annotations showing factuality.

content and degree of accuracy across different designs. This
approach allowed us to reduce the number of variables tested
and ensure a more targeted exploration of the design strate-
gies themselves. Participants always saw the baseline design
first, which had no factuality markup, and displayed the text
only for the Question, Response, and Source (see Figure 1).

After being shown the baseline design, participants were
asked to rate their perceptions about the model and its re-
sponse on three metrics, using a 7-point Likert scale:

1. Perceived accuracy: How accurate do you think this AI-
generated response is?

2. Ease of validation: With the information presented in this
way, how easy is it for you to determine the accuracy of
this AI-generated response?

3. Trust: With the information presented in this way, how
much do you trust the AI system that generated the re-
sponse?

Following their ratings of the baseline design, participants
were introduced to the concept of a factuality score – a fea-
ture that compares linguistic components of the Response
against the Source – and that a high factuality score indi-
cated that the response was aligned with the information in
the Source, and thus was likely to be correct. The factuality
scores in our experiment were created manually, as opposed
to using an existing factuality scoring algorithm, by com-
paring information units in the Response against the Source
text, and tweaking wording in the Response to engender a
range of factuality scores to display.

Participants were then presented with six design strate-
gies for displaying factuality information on the Response:
Three factuality designs, each at two levels of granularity.
The three designs incorporated color-coding to show the fac-
tuality of individual linguistic units in the response, on a
scale ranging from 0 (red) to 1 (green)2, shown in Figure 2.
The designs were highlight-all, in which every part of the
response text was highlighted with a color corresponding to
the factuality score; highlight-threshold, in which only the

2This color scale is not ideal from an accessibility standpoint
for color-blind users. We suggest modifying the color endpoints or
adding shading information for systems deployed on a larger scale.

sections of the response text with a factuality score below
0.5 were highlighted to signal inaccuracies; and score, in
which all parts of the response text were tagged with their
factuality score, using both color-coded underlines and the
numerical factuality score value.

In addition, designs were presented at two levels of gran-
ularity – term-level or phrase-level – referring to the size
of the text chunks over which the factuality was evaluated.
At phrase-level granularity, if there was an inaccuracy in one
term in a phrase, then the entire phrase would be tagged with
a lower factuality score. In contrast, at term-level granular-
ity, just that term would be tagged with a lower factuality
score, while the other terms in the phrase or sentence would
individually be tagged with their own factuality scores. Ta-
ble 1 shows the six design strategies that users evaluated.

Participants saw the factuality design strategies one at a
time, and rated their perceptions on two metrics: ease of val-
idation and trust (questions 2 and 3 above) on a 7-point Lik-
ert scale. Note that users were not asked about perceived
accuracy (question 1) for any designs besides the baseline,
because the wording of the text was identical in all designs.

Participants performed this rating task for each of the
three designs at one granularity (term-level or phrase-level),
and then rank-ordered them along with the baseline by pref-
erence. They then performed the same rating and preference-
ranking for the three designs at the other granularity. The
three designs within each granularity were presented in a
randomized order across participants, and the order of the
two granularities was randomized across participants to re-
duce order effects. Finally, participants responded to demo-
graphic and professional experience questions, as reported
in Section 4.1.

Figure 2: The factuality scale that was presented to Experi-
ment 1 participants. The color scale and corresponding num-
bers demonstrated the range of possible factuality scores.
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Granularity Highlight-all Highlight-threshold Score

Term

Phrase

Table 1: The set of designs presented to each participant for displaying factuality scores on the model’s response. Each partici-
pant saw and rated all six designs, in a randomized order grouped by granularity.

4.3 Analysis Methods
Three dependent variables that examined different facets of
participants’ opinions of the factuality designs were mea-
sured: 7-point Likert scale ratings of (a) trust and (b) ease
of validating the response accuracy, and (c) rank-order pref-
erences of the different designs. Analyses used generalized
linear mixed-effects models in R (R Core Team 2019), us-
ing the lme4, lmerTest, and emmeans packages (Bates et al.
2015; Kuznetsova, Brockhoff, and Christensen 2017; Lenth
2020), with separate models for each dependent variable.

We first assessed how each design strategy compared
with the baseline regarding ratings of trust, ease of val-
idation, and preference. The statistical models included
the within-subjects categorical independent variable Design
Type, which had seven levels and was treatment-coded, with
the baseline set as the reference level. This analysis allows
for the comparison of the rating of each individual design
strategy against the rating given for the baseline design. Two
separate models were run, one for each of the two ratings
– trustworthiness and ease of validating accuracy – both of
which were continuous. The model’s random effect structure
included the levels of Design Strategy within Participant ID,
with random effects which accounted for less than 1% of
the model’s variance removed in order to aid convergence.
Following the full model, pairwise contrasts were conducted
to explore comparisons between every pair of Design Strat-
egy levels, with p-values corrected for multiple comparisons
using the Tukey correction.

Second, an omnibus linear mixed-effects model with the
factors Granularity (term, phrase) x Design Type (highlight-
all, highlight-threshold, score) was conducted, including
only the six markup design strategies (i.e., excluding the
baseline design), to investigate rating differences across de-
signs at the level of the factors Design Type and Granularity.

Finally, a cumulative link mixed model with participants’
preference ranking as the dependent variable was conducted.
Bartlett’s test for homogeneity of variances indicated that the
variances were not significantly different across conditions
for the dependent variables.

4.4 Results
Trust The first model compared participants’ ratings of
trustworthiness for each of the design strategies against the

baseline as the reference level. As can be seen in Figure 3(a),
all six designs were rated as significantly more trustworthy
than the baseline, suggesting that presenting factuality in-
formation using any of the markup methods increased par-
ticipants’ trust in the model. See Table 2 for the detailed sta-
tistical results. Post-hoc pairwise comparisons between each
pair of designs revealed no additional significant differences
after correction for multiple comparisons.

Next, we conducted the omnibus model of Granularity
x Design Type. This revealed a main effect of Granular-
ity (F(1, 103) = 6.30, p = .01), with term-level granular-
ity designs (M = 3.54) rated higher than phrase-level de-
signs (M = 3.25). There was no main effect of Design Type
(F(2, 106) = 1.27) or interaction (F(2, 309) < 1).

As an exploratory post-hoc analysis, we investigated
whether participants’ rating of the accuracy of the model’s
response when presented with the baseline design (ques-
tion (1) in Section 4.2) affected how much they trusted the
model when it subsequently displayed factuality scores. For
visualization purposes, we categorized participants into two
groups: The low baseline accuracy group, which was de-
fined as those participants who rated the model’s response
accuracy in the baseline design at or below 4 (the midpoint
of the rating scale; N = 87), and the high baseline accu-
racy group, who rated the baseline response accuracy as
5 or higher (N = 17). As can be seen in Figure 4(a), par-
ticipants who rated the model’s response at baseline with
low accuracy (dashed line) also had low trust of the model
when viewing the baseline non-marked-up design, but sub-
sequently increased their trust ratings after reviewing the
factuality score markups. In contrast, participants who ini-
tially felt the model’s response was more accurate (solid
line) also had high trust of the model’s response when shown
the baseline design, but subsequently decreased their trust
ratings after examining the factuality information.

Ease of validation The first model compared participants’
ratings on the ease of assessing the model’s accuracy for
each of the designs against the baseline. As can be seen
in Figure 3(b), of the six design strategies, three were rated
as significantly easier to assess the response accuracy com-
pared to the baseline: highlight-all at phrase-level granular-
ity, and highlight-all and highlight-threshold at term-level
granularity. The other three designs were not significantly

776



(a) Trust ratings (b) Ease of validating accuracy ratings

Figure 3: Experiment 1 ratings of each design strategy: (a) trust and (b) ease of validating the accuracy of the model’s response.

EXPERIMENT 1 EXPERIMENT 2

Strategy Trust Ease of Validation Trust Ease of Validation
Mean (SE) t (p) Mean (SE) t (p) Mean (SE) t (p) Mean (SE) t (p)

Baseline 2.63 (0.17) – 4.29 (0.20) – 2.75 (0.16) – 4.81 (0.17) –

Phrase
highlight-all 3.31 (0.17) 4.59 (<.001) 4.74 (0.17) 2.24 (.03) 3.67 (0.17) 5.81 (<.001) 5.03 (0.17) 1.10 (.27)
highlight-
threshold

3.22 (0.16) 4.00 (<.001) 4.53 (0.17) 1.19 (.23) 3.38 (0.17) 4.15 (<.001) 4.58 (0.16) -1.15 (.25)

score 3.21 (0.17) 3.93 (<.001) 4.38 (0.17) 0.48 (.63) 3.55 (0.18) 5.29 (<.001) 4.51 (0.18) -1.48 (.14)

Term
highlight-all 3.62 (0.18) 6.57 (<.001) 4.72 (0.19) 2.10 (.04) 3.34 (0.18) 3.84 (<.001) 4.23 (0.20) -2.77 (.01)
highlight-
threshold

3.49 (0.18) 5.80 (<.001) 4.88 (0.16) 2.96 (.003) 3.18 (0.18) 2.87 (.004) 4.44 (0.19) -1.82 (.07)

score 3.54 (0.18) 5.85 (<.001) 4.32 (0.20) 0.13 (.89) 2.94 (0.16) 1.28 (.20) 3.57 (0.19) -6.16 (<.001)

Table 2: Trust and ease of validation ratings: means, standard errors (SE), and statistical results across the two experiments.
Trust and ease of validation were rated on a 1-7 Likert scale, with 7 as the highest score. t- and p-values are from the model
with the baseline set as the reference level. Bolded text indicates ratings that were significantly higher than the baseline, and
underlined text indicates ratings that were significantly lower than the baseline.

different from the baseline; see Table 2 for the detailed sta-
tistical results. Post-hoc pairwise comparisons between each
pair of design strategies revealed no significant differences
after correction for multiple comparisons.

Next, the omnibus model investigating Granularity x
Design Type revealed a main effect of Design Type
(F(2, 103) = 4.62, p = .01), with highlight-all (M = 4.73)
and highlight-threshold (M = 4.71) rated higher than score
(M = 4.35). There was a Granularity x Design Type interac-
tion (F(2, 206) = 3.12, p = .05), the locus of which can be
seen in Figure 3(b), largely driven by the fact that highlight-
threshold was rated higher relative to the other designs at the
term-level but not phrase-level. There was no main effect of
Granularity (F(1, 103) < 1).

Preference Participants rank-ordered each of the three de-
signs and the baseline within each granularity level. Thus,
each ranking response compared four designs, with rank 1
for the most preferred and 4 for the least preferred design.
At phrase-level granularity, the highlight-all design was the
most preferred, score was second most preferred, highlight-
threshold was third, and the baseline was the least pre-
ferred (see Table 3). There was a significant effect of Design
Type on the means of preference rankings (χ2(3) = 103.82,
p < .001). Post-hoc pairwise comparisons revealed that par-
ticipants preferred each of the factuality designs signifi-
cantly more than the baseline (p <.001). Similarly, at term-
level granularity, the highlight-all design was the most pre-
ferred, highlight-threshold was second, score was third, and
baseline was the least preferred. There was a significant ef-
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Figure 4: Participants’ trust ratings for the baseline design,
and for the six design markups averaged together, for (a) Ex-
periment 1 and (b) Experiment 2. Participants were divided
into two groups based on whether they rated the model’s re-
sponse as high accuracy (rating of 5-7) or low accuracy (rat-
ing of 1-4) when initially presented with baseline design.

fect of Design Type on the means of the preference rankings
(χ2(3) = 78.01, p <.001). Post-hoc pairwise comparisons
revealed that participants preferred each of the factuality de-
signs significantly more than the baseline (p <.001). No
other comparisons yielded statistically significant results.

Participants were also asked about their preference be-
tween the two types of granularities: 52.9% of participants
preferred phrase-level granularity, while 26.9% of the par-
ticipants preferred term-level granularity, with 10.6% of par-
ticipants responding with “don’t know” and 9.6% of partici-
pants selecting “other” (e.g. sentence-level, entire response).

5 Experiment 2
The goal of Experiment 2 was to assess whether the Experi-
ment 1 results were robust to extension, and to automatize
aspects of generating the Response and factuality scores.
As such, several aspects of the procedure were modified.
First, Experiment 1 investigated factuality designs in a sin-
gle question-answer scenario; a goal of Experiment 2 was
to assess the generalizability of the results to additional do-
mains. Thus Experiment 2 included two new scenarios: a
medical question and an HR question. These were selected
as domains for which LLMs are increasingly employed for
business automation purposes. The two new scenarios are
shown in Figure B.1 in Do et al. (2025) Appendix B.

Second, in contrast to Experiment 1 where the Response
was manually generated without LLM input, for Experi-
ment 2, we started each scenario with an LLM-generated
response as ground-truth (after comparing it to the Source
and determining that it was entirely faithful). As this exper-
iment required the presented Response to have a range of
factuality scores, we then edited the model’s ground-truth
response to contain errors, which became the Response for
the experimental scenario. To determine the factuality scores

to display in the designs, we used the Python spaCy li-
brary (Honnibal et al. 2020) to calculate the semantic sim-
ilarity between each term or phrase in the edited Response
and the corresponding term or phrase in the ground-truth re-
sponse, and used that similarity as the factuality score for
that linguistic unit. Thus the factuality scores shown in Ex-
periment 2 were generated by automated means rather than
human-created as in Experiment 1. We opted to create the
Response and factuality scores in this manner (rather than
using an entirely-live LLM response and factuality scoring
algorithm) as it gave us experimental control over the range
of factuality scores that was presented to participants, as the
goal of the present experiment was to assess opinions about
the factuality designs, rather than assessing the accuracy of
factuality scoring algorithms.

These factuality scores were then used to generate the
markups for the six design strategies. To determine the high-
light colors, factuality scores were mapped to colors in a
modified manner from that in Experiment 1. As the seman-
tic similarity-based factuality scores were biased towards
high-magnitude, positive values, the color mapping thresh-
olds were adjusted to have higher resolution at the parts of
the scale with the largest concentration of numerical scores.
See Do et al. (2025) Figure B.2 for the modified Experi-
ment 2 factuality color scale.

Minor adjustments were made to the linguistic units used
for factuality scores: In Experiment 1, we annotated some
multi-word noun phrases (e.g., “musical comedy” or “docu-
mentary film”) as one term, whereas for Experiment 2, term-
level markups were only individual words with the exception
of multi-word proper nouns (e.g., disease names). We also
added a question asking participants to rank all six designs
together, in addition to ranking the designs separately within
each level of granularity.

5.1 Participants
We recruited another 104 IBM employees via internal Slack
channels. A condition of participation was that they had not
participated in Experiment 1. Participants’ work locations
consisted of 17 unique countries, with the US as the most
common (59%). Job roles again spanned a wide array of
disciplines, and participants had a range of experience with
LLMs, from never to daily usage (see Do et al. 2025 Fig-
ure A.1(b)). Participants had varying degrees of English ex-
posure and proficiency, with a very similar distribution as in
Experiment 1: 58% of participants reported that they were
exposed to English from birth, 19% before age 7, and 23%
after age 7. For self-rated proficiency, 71% rated themselves
at 7 (native or native-like proficiency), 20% at 6, 5% at 5, 3%
at 4 (medium), and 1% at 3. All participants provided writ-
ten informed consent and were treated in accordance with
the guidelines for ethical treatment of human participants.

5.2 Procedure
The procedure for Experiment 2 was largely the same as that
of Experiment 1, with a few changes as noted above. Partic-
ipants were randomly assigned to one of the two scenarios,
HR or medical, and rated all of the designs for that scenario
(see Do et al. 2025 Figure B.1 for the text of the scenarios).
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EXPERIMENT 1 EXPERIMENT 2
Strategy Phrase Term Phrase Term Overall

Baseline 3.31 (0.12) 3.22 (0.12) 3.34 (0.10) 2.90 (0.13) 5.14 (0.21)

Phrase
Highlight-all 2.06 (0.10) – 1.82 (0.09) – 2.56 (0.15)
Highlight-threshold 2.33 (0.08) – 2.51 (0.09) – 3.62 (0.17)
Score 2.31 (0.10) – 2.34 (0.10) – 3.56 (0.19)

Term
Highlight-all – 2.13 (0.10) – 2.09 (0.09) 3.94 (0.16)
Highlight-threshold – 2.21 (0.09) – 2.16 (0.09) 4.02 (0.19)
Score – 2.44 (0.10) – 2.85 (0.10) 5.16 (0.17)

Table 3: Preference rank-order means (standard errors). The most preferred design is bolded. Ranking scores are on an inverse
scale; thus lower numbers indicate higher preference. In both experiments, participants ranked designs separately within each
granularity level. In Experiment 2, participants additionally ranked designs across both granularity levels in a single question.

There were 55 participants who completed the HR scenario,
and 49 participants who completed the medical scenario.

5.3 Results
Trust First, we ran a model comparing the trustworthiness
ratings of each of the design strategies against the baseline.
All of the designs with the exception of term-level score
were rated significantly higher on trust than was the base-
line design (see Figure 5(a)). The mean and standard error
of the trust ratings, as well as results from this statistical
model comparing each design strategy against the baseline,
are shown in Table 2. In the post-hoc pairwise comparisons
between all pairs of designs, three remained significant after
correcting for multiple comparisons: phrase-level highlight-
all was rated as significantly more trustworthy than both
term-level highlight-threshold (t(240) = 3.09, p = .04) and
term-level score (t(240) = 4.60, p < .001), and phrase-level
score was rated as significantly more trustworthy than term-
level score (t(437) = 4.02, p = .001).

Next, we conducted an omnibus model investigating the
main effects of Granularity and Design Type on the six de-
sign strategies, excluding the baseline. There was a main ef-
fect of Granularity (F(1, 103) = 7.73, p = .007), with phrase-
level granularity (M = 3.53) rated higher than term-level
granularity (M = 3.15). There was a main effect of Design
Type (F(2, 125) = 6.24, p = .003), with highlight-all rated
the highest (M = 3.50), and highlight-threshold (M = 3.28)
and score (M = 3.25) rated lower. There was also a Granu-
larity x Design Type interaction (F(2, 243) = 4.08, p = .02).
The locus of this interaction can be seen in Figure 5(a) and
Table 2, by the difference in ratings of the score design strat-
egy between phrase-level and term-level Granularity.

To investigate whether participants found the different
scenarios (i.e., HR vs. medical scenario) to affect their trust
ratings, we additionally ran a Granularity x Design Type x
Scenario model on the ratings of the six design strategies
(excluding the baseline). As with the previous model, there
was a main effect of Granularity (F(1, 103) = 8.18, p = .005)
and Design Type (F(2, 140) = 6.24, p = .003), as well as
a Granularity x Design Type interaction (F(2, 231) = 3.93,
p = .02). However, importantly, all effects involving the Sce-

nario factor were not significant (all ps >.12), demonstrat-
ing that idiosyncracies of the scenarios themselves were not
driving the trust ratings.

We again conducted an exploratory visualization, splitting
participants into two groups based on how they had rated
the accuracy of the model’s response when presented with
the initial baseline design: high accuracy (N = 13) or low
accuracy (N = 91); see Figure 4(b). As in Experiment 1,
participants who thought the model’s response had low ac-
curacy (dashed line) also initially rated the model with low
trust, but subsequently increased their trust ratings when pre-
sented with design information detailing the factuality of the
response. In contrast, participants who thought the model’s
response had high accuracy (solid line) initially rated the
baseline design with high trust, but decreased their trust rat-
ings once presented with factuality score information.

Ease of validation First, we ran a model comparing the
rating for each of the six design strategies against the base-
line rating. Although two design strategies were rated sig-
nificantly different than the baseline design – term-level
highlight-all and term-level score – both were rated lower,
that is, as more difficult to validate the accuracy of compared
to the baseline. See Figure 5(b) and Table 2 for the numerical
and statistical results. In the post-hoc pairwise comparisons
between all pairs of designs, all of the design strategies, in-
cluding the baseline, were rated as easier to validate the ac-
curacy than term-level score (all ts > 3.18, all ps < .03).
In addition, phrase-level highlight-all was rated significantly
higher than term-level highlight-all (t(259) = 3.83, p = .003).

The omnibus model of Granularity x Design Type for
the six design strategies (excluding the baseline) revealed a
main effect of Granularity (F(1, 103) = 12.83, p <.001), with
phrase-level granularity (M = 4.71) rated higher than term-
level granularity (M = 4.08). There was a main effect of De-
sign Type (F(2, 124) = 15.03, p < .001), with highlight-all
rated the highest (M = 4.63), highlight-threshold (M = 4.51)
in the middle, and score (M = 4.04) rated lowest. There
was also a Granularity x Design Type interaction (F(2,
243) = 9.78, p < .001), as can be seen in the different pat-
terns of Design Strategy in Figure 5(b) and Table 2.

Next, we ran a Granularity x Design Type x Scenario
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(a) Trust ratings (b) Ease of validating accuracy ratings

Figure 5: Experiment 2 ratings of each design strategy: (a) trust and (b) ease of validating the accuracy of the model’s response.

model to investigate whether the different stimulus scenar-
ios affected ease of validation ratings. The results were very
similar to the previous model, with a main effect of Granu-
larity (F(1, 102) = 12.72, p < .001), a main effect of Design
Type (F(2, 123) = 14.94, p < .001), and a Granularity x De-
sign Type interaction (F(2, 240) = 9.83, p < .001). There
was a main effect of Scenario (F(1, 102) = 5.84, p = .02),
with the Medical scenario (M = 4.71) rated easier to validate
than the HR scenario (M = 4.07). This likely reflects the
fact that the medical scenario was noticeably shorter than
the HR scenario, so there was less text to read through and
verify the accuracy. However, no interactions involving Sce-
nario reached significance, demonstrating that properties of
the scenarios themselves did not differentially affect ratings
of validation ease between the different design strategies,
and thus the conclusions of the relative ratings of the design
strategies hold across multiple scenarios.

Preference Preferences, ranked from most (1) to least
(7) preferred across both granularity levels, were as fol-
lows: phrase-level highlight-all, phrase-level score, phrase-
level threshold, term-level threshold, term-level highlight-
all, baseline, and term-level score. There was a signifi-
cant effect of Design Strategy on the means of prefer-
ence rankings (χ2(6) = 150.42, p <.001). Post-hoc pairwise
comparisons showed that participants significantly preferred
the phrase-level highlight-all design over all other designs
(p <.01). In contrast, both baseline and term-level score de-
signs were significantly less preferred compared to other de-
signs, and there was no significant difference between the
two. See Table 3 for the ranking means.

We additionally aggregated the preference rankings by
Granularity level. There was a significant effect of Granu-
larity on the means of preference rankings (χ2(2) = 100.88,
p <.001). The preference rankings followed the order of
phrase-level, term-level, and baseline, with every pairwise
comparison showing a significant difference (p <.001).

6 Discussion
In the present work, we created six design strategies for dis-
playing factuality about an LLM’s response in a question-
answer scenario, and conducted two experiments where par-
ticipants rated these designs on trust, ease of validating the
accuracy, and preference. Overall, highlighting every phrase
in the response using a factuality score color scale (the
phrase-level highlight-all design) was the most preferred,
trusted, and easiest for users to validate the accuracy of a re-
sponse. Our results suggest several design recommendations
for communicating factuality scores to users, which we ex-
plain according to each outcome, and also additional factors
that may influence factuality designs.

6.1 Design Recommendations
Trust All of our factuality designs were effective at increas-
ing and calibrating trust compared to the baseline of show-
ing no factuality information. Hence, we recommend pre-
senting factuality information using one or more of the pro-
posed designs to increase user trust. In addition, in an ex-
ploratory analysis, participants’ initial accuracy assessment
of the model’s response had a substantial impact on their
trust after they viewed the factuality scores. Participants who
initially overlooked errors in the model’s response decreased
their trust after viewing the errors called out through the fac-
tuality scores. In contrast, participants who initially identi-
fied errors in the model’s response increased their trust when
they observed that the factuality scores accurately flagged
those errors. Therefore, the current results suggest that incor-
porating factuality information into LLM responses might
help to appropriately calibrate the level of end-users’ trust in
the model – either in a positive or a negative direction.

Ease of validation The phrase-level highlight-all design
was rated as easier to validate the model’s accuracy than
the baseline design. However, designs at term-level gran-
ularity showed inconsistent results between the two ex-
periments: In Experiment 1, term-level highlight-all and
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highlight-threshold designs were rated as significantly eas-
ier to assess accuracy than the baseline. In contrast, in Ex-
periment 2, the term-level highlight-all and score designs
were rated as more difficult to validate accuracy than the
baseline. A possible explanation is that the number of an-
notated terms was higher in Experiment 2 (HR: 39, Medi-
cal: 17) than in Experiment 1 (10), potentially overwhelm-
ing participants’ ability or interest in investigating the accu-
racy of the model’s response. A participant in Experiment
2 mentioned, “The numbers in colored bubbles makes the
text difficult to read.” Additionally, the proportion of inaccu-
rate terms (color-coded with red or pink) was lower in Ex-
periment 2 (HR: 33%, Medical: 35%) than in Experiment 1
(50%), which may have led users to perceive that term-level
designs are less informative for validating accuracy. As a re-
sult, we recommend adjusting the granularity of annotations
according to the model’s response length, or incorporating a
feature that enables users to disable or filter accurate terms,
in order to reduce distractions when assisting users in vali-
dating the accuracy of the response.

Preference The most common granularity preference was
phrase-level, and within the phrase-level granularity de-
signs, highlight-all was most preferred. Thus, we recom-
mend the highlight-all style in cases where user preference
and experience is the primary objective.

6.2 Factors Impacting Factuality Communication
Our study investigated scenarios where factuality informa-
tion is likely to be valued; namely, a question-answer task.
However, LLM “hallucinations” are not always undesirable
or factually inaccurate. For example, researchers have ex-
plored the use of LLMs as creativity support tools for tasks
including writing stories (Wang et al. 2023), fan fictions (Al-
fassi et al. 2025), and humor (Wu, Weber, and Müller 2025);
brainstorming and ideation (Muller et al. 2024; Muller, He,
and Weisz 2024; He et al. 2024); and using analogical think-
ing to solve design problems (Yang et al. 2025). In use cases
like these, presenting factuality scores are likely less useful,
because the model’s response is not expected to be an accu-
rate or veridical reflection of a source (or reality).

While our study assumed that the algorithm generating
factuality scores for the model’s response is reliable, no al-
gorithm is perfect and incorrect factuality scores have the
potential to erode users’ trust in a model. One way to miti-
gate this issue is to present factuality scores in a fuzzy for-
mat, such as using ranges, instead of precise numbers. In our
study, we found that the highlighting methods that visually
represent a range of factuality scores with a single color per-
formed better than the score method, which presented the
precise numerical factuality score. It is possible that this
fuzziness was one factor in why the highlighting designs
were generally favored over the score designs. Therefore,
we encourage HCI researchers to further investigate how to
effectively communicate the uncertainty in factuality scores
to address the limitations of the algorithms.

The present research focused on a model’s response
which contained inaccuracies, but it is important to acknowl-
edge situations where a response is entirely accurate or faith-
ful to the source. High factuality scores should increase end-

users’ confidence in the LLM response, although some users
may be skeptical when seeing a perfect rating. Addition-
ally, in the present work, we told participants to assume the
source was reliable; however, it is possible for a response to
be faithful to an unreliable source. In such cases, high fac-
tuality (or faithfulness) scores may be misleading and could
lead to over-reliance on the response. We encourage future
research to explore design strategies for various situations.

6.3 Limitations and Future Directions
Our experiments focused on a question-answer scenario. An
important avenue for future research is to explore factuality
designs in other LLM tasks, such as summarization or classi-
fication. While Experiment 2 tested whether our conclusions
generalized to two additional scenarios, there is an enormous
amount of unexplored variation in domains and LLM inter-
actions in real-world scenarios. Future research should ex-
plore additional topic domains, source and response lengths,
and other features of the interaction.

We also created the experimental Responses by editing a
real LLM response rather than using the original response.
This allowed us to create designs with varying factuality
scores that effectively tested our research questions. How-
ever, real-world LLM responses may be different, such as
emitting a one-word response. However, considering the
rapid pace of technological change, the responses may vary
over time and across models, making it less critical to rely
on actual responses produced by existing models.

While we made efforts to recruit participants with di-
verse skills, LLM experience, language proficiency, and ge-
ographic locations, our participants were all employees of
a single technology company. Future studies should involve
broader participant samples from the general public.

Finally, it is important to note that our research did not
aim to exhaustively explore all potential design strategies.
Instead, this study should be viewed as a starting point, en-
couraging researchers to delve deeper into diverse design
strategies and expand the discussion.

7 Conclusion
Large language models have known problems with halluci-
nations. To address these challenges, researchers are devel-
oping algorithms to assess the factuality of an LLM model’s
output, but how to effectively communicate such factual-
ity information to end-users is an open question. We con-
ducted two experiments using three different scenarios to
compare six design strategies for communicating factual-
ity scores against a no-markup baseline. We found consis-
tent results showing that highlighting every phrase in the
model’s response based on its factuality score was the most
preferred strategy, and led to high trust of the model. This
design was also perceived to be easier to validate the accu-
racy of the LLM response than the baseline. Our findings
also suggested that factuality designs may enable partici-
pants to appropriately calibrate their trust in a model. Thus,
presenting factuality score information in an understandable
way is an important tool for end-users to be able to evaluate
properties of large language models that are critical to being
an informed consumer of AI.
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