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Detection of acute 3,4-methylenedioxymethamphetamine
(MDMA) effects across protocols using automated natural
language processing
Carla Agurto1, Guillermo A. Cecchi 1, Raquel Norel 1, Rachel Ostrand1, Matthew Kirkpatrick2, Matthew J. Baggott3,
Margaret C. Wardle4, Harriet de Wit5 and Gillinder Bedi6

The detection of changes in mental states such as those caused by psychoactive drugs relies on clinical assessments that are
inherently subjective. Automated speech analysis may represent a novel method to detect objective markers, which could help
improve the characterization of these mental states. In this study, we employed computer-extracted speech features from multiple
domains (acoustic, semantic, and psycholinguistic) to assess mental states after controlled administration of 3,4-
methylenedioxymethamphetamine (MDMA) and intranasal oxytocin. The training/validation set comprised within-participants data
from 31 healthy adults who, over four sessions, were administered MDMA (0.75, 1.5 mg/kg), oxytocin (20 IU), and placebo in
randomized, double-blind fashion. Participants completed two 5-min speech tasks during peak drug effects. Analyses included
group-level comparisons of drug conditions and estimation of classification at the individual level within this dataset and on two
independent datasets. Promising classification results were obtained to detect drug conditions, achieving cross-validated
accuracies of up to 87% in training/validation and 92% in the independent datasets, suggesting that the detected patterns of
speech variability are associated with drug consumption. Specifically, we found that oxytocin seems to be mostly driven by changes
in emotion and prosody, which are mainly captured by acoustic features. In contrast, mental states driven by MDMA consumption
appear to manifest in multiple domains of speech. Furthermore, we find that the experimental task has an effect on the speech
response within these mental states, which can be attributed to presence or absence of an interaction with another individual.
These results represent a proof-of-concept application of the potential of speech to provide an objective measurement of mental
states elicited during intoxication.
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INTRODUCTION
In recent years, psychiatry researchers have endeavored to
identify alternative, objective evaluations to aid subjective clinical
assessments and diagnoses [1]. One approach analyzes free
speech, a promising data source due to its low cost, easy
acquisition, and high reliability. Speech, a universal human
phenomenon, represents a rich source of semantic, syntactic,
and acoustic data that can be mined for clinically relevant
information such as quantifying incoherence in schizophrenic
speech [2]. In the past, speech assessment was largely reliant on
clinical observation, manual coding, or word counting methods
(e.g. see [3]). These approaches, while providing important
information, have limitations in objectivity and how comprehen-
sively they can assess this nuanced, complex behavior e.g.
acoustic components. As a complement to existing methods,
recent rapid developments in computerized natural language
processing [4] provide increasingly sophisticated automated
methods to quantitatively characterize speech and investigate
mental states based on the features extracted. These methods are

routinely used in industry for the purpose of speech recognition
[5], chatbots and conversation agents [6], and recommender
systems [7] among others. Whether they could aid research and
practice in psychiatry is only beginning to be explored in the
context of simulated psychiatric evaluations (e.g. see [1, 8, 9]) or
the analysis of alternative ways of communication such as social
media (e.g. see [10–12]).
Research on acute drug effects is one area in which investiga-

tion of mental states is paramount. Abused drugs profoundly alter
mental states in ways that appear to motivate use [13–15]. Mental
state changes due to intoxication are typically assessed using
standardized self-report measures of relevant subjective states
(e.g. “euphoric”, “high”) repeatedly throughout the drug experi-
ence [13, 14]. While such approaches provide valuable informa-
tion, the sensitivity of standardized scales is limited by the mood
descriptors included, which may not capture the effects of
emerging drugs. Moreover, self-report scales rely on access to
interoceptive experiences, as well as motivation and capacity to
accurately report them, factors that may vary systematically with
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drug effects. Computerized analysis of free speech offers the
potential to by-pass some of these limitations, providing a more
direct “window into the mind” [16].
Based on this rationale, we conducted two initial investigations

employing automated natural language processing to assess
mental state alterations due to intoxication. In the first, we
investigated whether the semantic content of speech while
intoxicated could discriminate between different drugs in a small
double-blind placebo-controlled within-participants human
laboratory study (N= 13, [16]). Volunteers received 3,4-methyle-
nedioxymethamphetamine (MDMA; the main psychoactive con-
stituent in ‘ecstasy’ or ‘molly’; 0.75, 1.5 mg/kg), methamphetamine
(20 mg), and placebo before undergoing a 10-min free speech task
in which they described people close to them. We measured
speech semantic content using Latent Semantic Analysis (LSA), a
well-validated automated content assessment method [17].
Specifically, for each speech transcription we extracted LSA values
for semantic proximity to several concepts chosen a priori to
reflect the apparently usual prosocial effects of MDMA (e.g.
empathy, friend, rapport, etc.). We found that speech on MDMA
(1.5 or 0.75 mg/kg) was closer to relevant concepts such as
empathy, rapport, friend, and intimacy than speech on metham-
phetamine or placebo. Moreover, in cross-validated prediction,
speech features differentiated MDMA (1.5 mg/kg) and placebo
with 88% accuracy, and MDMA (1.5 mg/kg) and methampheta-
mine with 84% accuracy [16]. Thus, this preliminary investigation
indicated that natural language processing of free speech is
capable of capturing behavior information associated with clinical
studies findings, such as an increased empathy of an individual
due to intoxication with MDMA.
In the second within-participants analysis, 35 volunteers

received placebo and MDMA (1.5 mg/kg) across two sessions,
administered in a randomized double-blind fashion, prior to a 5-
min speech task focused on an important person in the
participant’s life [18]. Analyses employed a bag-of-words
approach, with classification based on how often individual words
appeared in speech transcriptions, without reference to their order
or context. A random forest machine learning approach classified
speech (placebo vs. MDMA) based on the frequency of word
occurrence within transcriptions. This allowed identification of the
most important words contributing to the classification of speech
on MDMA relative to placebo. Words contributing to the
classification included some with social content (outgoing,
camaraderie), as well as emotionally positive (beautiful) and
negative (trouble) words. These findings thus also support the
potential for computerized natural language processing to
contribute to understanding of the acute effects of psychoactive
drugs like MDMA.
These initial analyses had several limitations: they focused on

limited aspects of speech (semantic content), had small sample
sizes, and did not use independent samples to test the
classification algorithms developed. Here, we conducted a
secondary analysis of a larger dataset to provide a more
comprehensive assessment of natural language processing for
detection of mental state changes during intoxication with MDMA
(0.75; 1.5 mg/kg), compared to both placebo and intranasal
oxytocin (20 IU). The larger study from which data were taken
[19] investigated the social behavioral effects of oral MDMA
compared to intranasal oxytocin, given that oxytocin administra-
tion produces some prosocial effects apparently similar to those of
MDMA (e.g. see [20]). In addition to publication of the behavioral
data from this study [19], a subset of these speech data were
previously analyzed using the bag-of-words approach described
above [18]. In this work, we perform a complete speech
characterization using a broader range of features that includes
semantic, acoustic, and psycholinguistic. We used a dataset
composed of a description task (performed with minimal
interaction with an interviewer) and a monologue task, as well

as two independent datasets acquired in similar conditions for
validation purposes. Within this setting, we aimed to test the
following hypotheses: (i) each drug condition had a unique
signature in speech, spanning different domains such as acoustics
and content; (ii) the higher the dose of MDMA, the greater the
associated changes in speech were; (iii) participants during the
monologue could express their emotions more freely given
the fact that they were alone in the room during the task; (iv)
the trained models would generalize well in the independent
validation datasets.

METHODS
Participants
Healthy participants who reported using “ecstasy” or “molly” at
least twice underwent comprehensive screening (medical exam-
ination, electrocardiogram, and structured interview) and pro-
vided written informed consent for participation. They then
performed two different speech tasks after drug administration
under procedures approved by the University of Chicago
Institutional Review Board. Exclusion criteria included current
medical illness or psychiatric disorder, body mass index outside of
18.5–30 kg/m2, cardiovascular disease, prior adverse ecstasy
response, and pregnancy or lactation. Of 35 participants, 4
participants were discarded from the dataset since at least one
of their 8 recordings (4 sessions × 2 speech tasks) were unusable.
Two of them did not engage in the monologue task (they did not
talk), while the other ones had very strong background noise in
their recordings. Participants comprised 12 females (age 24.6 ± 4.7
years) and 19 males (24.1 ± 4.5 years). More information of the
demographics and the substance at study entry can be found in
Table 1.

Experimental protocol
The study employed a randomized, double-blind, within-between-
participants design. All participants received placebo, two doses of
MDMA (0.75 mg/kg and 1.5 mg/kg), and one dose of oxytocin
(20 IU) over four different sessions. To account for potential
differences in the time course of these drugs and facilitate
blinding, a double-dummy approach was taken such that MDMA/
placebo capsules were administered orally 30 min before an
oxytocin/placebo intranasal spray. Thus, while participants
received both a capsule and an intranasal spray in each session,
they never received active MDMA and oxytocin together. Further
information about drug doses and administration procedures has
previously been published [18].
Sessions lasted from approximately 9 am until 1.30 pm and

were spaced at least 5 days apart for drug washout. Before
sessions, participants were asked to abstain from food for 2 h;
cannabis for 7 days—if participants’ urine test was positive for
cannabis, we followed up with a saliva test (Oratect, Branan
Medical Corp., Irvine, CA); alcohol or medications for 24 h; and all
other illicit drugs for 48 h. Compliance with these requirements
was ascertained by urine (Ontrak TestStik, Roche Diagnostic
Systems, Somerville, NJ), saliva (Oratect, Branan Medical Corp.,
Irvine, California), and breathalyzer (Alco-Sensor III Breathalyzer,
Intoximeters, St Louis, MO) tests at the beginning of each session.
Females were tested for pregnancy at each session. Speech tasks
were conducted between approximately 75 and 105min post-
MDMA/placebo administration, coinciding with expected peak
drug effects [21].

Assessment measures
In each session, participants completed 2 speech tasks. The first,
which we refer to as Description, comprised 5min of free speech,
with participants asked to talk about an important person in their
life. The specific person was selected randomly each session from
a list of four people provided previously by the participant. A

Detection of acute 3,4-methylenedioxymethamphetamine (MDMA) effects. . .
C Agurto et al.

2

Neuropsychopharmacology (2020) 0:1 – 10



research assistant listened, and if needed, they were trained to
help the participant continue speaking by asking questions
paraphrasing and reflecting the participant’s feelings. We have
previously employed this approach to elicit free speech [16]. In the
second task, Monologue, participants were asked to talk for up to
5min (as much or as little as they liked) about any topic. A list of
suggested topics was provided (e.g., family, friends, travel), but
these were not limiting and participants could change topics as
often as they wanted [22]. In the Monologue task, no listener was
present. All speech was recorded using one channel at 44.1 kHz in
WMA format. To analyze the semantic and syntactic speech
content, a professional blind to drug condition manually
transcribed the audio files.

Analytic approach
Pre-processing. We extracted features based both on the acoustic
properties of participants’ voices, and the information contained
in transcripts. To ensure optimal reliability of the acoustic
properties, the initial and final 30 s of each recording were not
used for feature extraction. In addition, for the Description task, in
which the research assistant was present and potentially speaking,
his/her voice was manually removed from the recording. For the
transcripts, in addition to removing the research assistant speech,
we also removed punctuation and any special characters (e.g., #, $,
[, etc.).

Feature extraction. To optimally mine the rich information in
speech for mental state analysis, we extracted three feature types:
acoustic, semantic, and psycholinguistic (i.e. syntactic). Below,
details are provided about feature extraction (see also Table 2):

a. Acoustic features: 88 acoustic features were extracted from
each recording. The main software tools used for the feature
extraction were Praat [23, 24] and Python (www.python.org).
Features were extracted from five categories (see Table 2).
First, we extracted features that characterize voice stability,
including jitter, shimmer, and voice breaks. Then, noise was
assessed with harmonic to noise ratio (HNR), noise to
harmonics ratio (NHR), and mean autocorrelation. The third
category includes temporal features such as the distribution
of pauses and utterances. Pitch variations across the total
recording time were also extracted. Information from the
power spectrum is represented via Mel-frequency cepstral
coefficients (MFCCs), which correlate with emotional states
[25–27]. Finally, we extracted formant values, which

characterize the acoustic resonance of uttered vowels in
the vocal tract. Formant information is used to estimate the
vowel space of each individual, which determines his/her
vowel quality. Vowel space information reflects speaker
characteristics, speech development, speaking style, socio-
linguistic factors, and speech disorders (e.g. [28, 29]).

b. Semantic features: To extract the semantic features,
we employed a similar approach to that which we have
previously used (LSA; see [16]). In the first stage, we
processed transcripts with the Natural Language Toolkit
(NLTK; [30]). Using the Treebank tagger in NTLK, we parsed
interviews into sentences and identified nouns. Finally, we
extracted the roots of words with the WordNetLemmatizer
to obtain robust measurements. This generated a list of
tokenized words for further processing. The second stage
identified the semantic proximity between lemmatized
words and several semantic concepts of interest by
representing each word as a numeric vector based on its
co-occurrence with every other word in a large corpus (the
TASA corpus, a collection of educational materials compiled
by Touchstone Applied Science Associates containing 7651
documents and 12,190,931 words, from a vocabulary of
77,998 distinct words). Using previous knowledge from
MDMA research [31], we selected the following concepts of
interest to best represent a range of subjective mental states
likely impacted by MDMA: affect, anxiety, compassion,
confidence, disdain, emotion, empathy, fear, feeling, forgive,
friend, happy, intimacy, love, pain, peace, rapport, sad,
support, think, and talk. A semantic proximity value was
then calculated using cosine distance (dot product)
between each concept of interest (using a unique word
representation) and each word in the speech transcripts.
Then, the median semantic proximity between each
concept and the overall text was estimated. This procedure
was repeated for the 21 concepts of interest, yielding
21 semantic features for each text.

c. Psycholinguistic features: These features, capturing the lexical
and syntactic complexity of speech, are divided into three
categories. First, we used the Computerized Propositional
Idea Density Rater (CPIDR [32]), to compute the total
word count and number of ideas (expressed propositions)
found in each transcript. Propositional density was also
computed by dividing the number of ideas by the total
word number. Second, we quantified parts of speech by
dividing the number of occurrences of each part of speech

Table 1. Demographics and substance use characteristics.

Category Training/validation
dataset (N= 31)

ID1 (N= 36) ID2 (N= 13)

Demographics Sex 39% females 50% females 31% females

Age 24.3 (4.4) 24.6 (4.7) 24.5 (5.4)

Race 100% Caucasian 67% Caucasian, 11% African
American, 3% Asian, 19% other/
mixed race

84% Caucasian, 8% African
American, 8% other/mixed race

Education in years 14.7 (1.30) 15.1(1.5) –

Current substance use Alcohol drink
per week

8.7 (6.8) 9.9 (10.6) 7.4 (5.5)

Smoking past month 32% 22% –

Lifetime occasions
recreational use

MDMA 12.6 (9.3) 10.2 (8.2) 12.6 (19.1)

Cannabis (days in
past month)

7 (7.24) 64% (more than 100 times) 9.5 (10.8)

Notes: Statistically significant difference was found for race category when the training/validation set was compared to ID1 (p-value of 4E−4) and ID2 (p-value
of 2E−2).

Detection of acute 3,4-methylenedioxymethamphetamine (MDMA) effects. . .
C Agurto et al.

3

Neuropsychopharmacology (2020) 0:1 – 10

http://www.python.org


by the total word number. This was done for pronouns,
nouns, verbs, determiners, indefinites, and definites. Third,
we extracted features to characterize participants’ lexical
content. We used Honore’s statistic, a measure of lexical
richness (number of words used exactly once) and Brunet’s
index, also a measure of lexical diversity.

Condition-level comparisons. As a first step to analyze whether
speech features differed between the placebo and active
conditions, we performed a univariate analysis using paired
Wilcoxon sign rank tests. Since we also wanted to evaluate the
influence of the task on the extracted features, we performed
these tests for each task separately. To correct for multiple
comparisons, false discovery rate (FDR) correction at q < 0.05 was
performed through the Benjamini–Hochberg procedure [33]. In
addition, we analyzed the interactions between the features that
pass FDR correction for all conditions using pairwise partial
correlations, which measure the linear relationship between two
variables while controlling for the effects of other variables. More
specifically, partial correlations were calculated using the inverse
of the regularized covariance matrix [34].

Classification. In addition to using condition-level descriptive
analysis to evaluate if the extracted features were associated with
mental states arising due to drug effects, we assessed their
predictive performance through classification analysis. To detect

the effects in the participants speech while they were under the
influence of the analyzed drugs, we need to consider the inherent
variability in speech across individuals. We illustrate this with the
following example: some people talk faster than others. If a drug
were to affect the speech rate of an individual by speeding it up
and we observed its effect on a person that talks slowly, it is likely
that this person would still talk slower than a person that usually
talks very fast. Therefore, the effect of the drug would remain
unnoticed. For this reason, we decided to adjust for these
differences by correcting the speech characteristics of each
individual by their own baselines. By doing so, we would
effectively measure the differential effect of a drug in each
individual. We followed this rational to detect the effects of a drug
with respect to placebo by subtracting their feature representa-
tions. On the other hand, if we wanted to explore the effect of
placebo with respect to the drug, we would need to reverse the
sign of the subtraction. In other terms, classifying condition A vs B
is equivalent to classifying (A – B) vs (B – A). More details of this
approach can be found in [16]. After generating features based on
this representation, we evaluated the following classification tasks:
placebo vs. each active drug condition (MDMA 0.75 mg/kg; MDMA
1.5 mg/kg, and oxytocin), and MDMA 0.75 mg/kg vs. MDMA
1.5 mg/kg for the Description and Monologue tasks individually.
Prior to classification, all features were standardized to a mean of 0
and standard deviation of 1. We employed three classifier types to
evaluate the predictive power of speech features to differentiate
between conditions: (a) linear support vector machines (SVM),

Table 2. Description of extracted speech features.

Type of Feature Category List of all features

Acoustic Voice stability Jitter, shimmer, voice breaks

Noise measurements Noise to harmonics ratio, harmonics to noise ratio, mean autocorrelation

Pitch variations Pitch distribution

Spectral characterization Max dB, max frequency, energy, slope

Vowel space Total area, ‘a-i-u’ area, Formants 1,2,3 distribution

Mel-frequency cepstral
coefficients (MFCC)

Sixteen MFCCs

Temporal Features Pause duration distribution, articulation and speech rates

Semantic LSA (21 Concepts of interest) affect, anxiety, compassion, confidence, disdain, emotion, empathy, fear, feeling, forgive, friend,
happy, intimacy, love, pain, peace, rapport, sad, support, think, and talk.

Psycholinguistic CPIDR Ideas, total words, propositional density

Parts of speech pronouns, nouns, verbs, determiners, indefinites and definites, I (singular first
person noun)

Lexical content Honore’s statistic and Brunet’s index, content words, total words, empty words, type-token,
frequency, and fillers.

Type of feature Category List of all features

Acoustic Voice stability Jitter, shimmer, voice breaks

Noise measurements Noise to harmonics ratio, harmonics to noise ratio, mean autocorrelation

Pitch variations Pitch distribution

Spectral characterization Max dB, max frequency, energy, slope

Vowel space Total area, ‘a-i-u’ area, Formants 1,2,3 distribution

Mel-frequency cepstral
coefficients (MFCC)

Sixteen MFCCs

Temporal Features Pause duration distribution, articulation and speech rates

Semantic LSA (21 Concepts of interest) affect, anxiety, compassion, confidence, disdain, emotion, empathy, fear, feeling, forgive, friend,
happy, intimacy, love, pain, peace, rapport, sad, support, think, and talk.

Psycholinguistic CPIDR Ideas, total words, propositional density

Parts of speech pronouns, nouns, verbs, determiners, indefinites and definites, I (singular first
person noun)

Lexical content Honore’s statistic and Brunet’s index, content words, total words, empty words, type-token,
frequency, and fillers.
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which estimates based on linear combinations of features; (b)
nearest neighbors, whose predictions are based on similarity
metrics between samples; and (c) a non-linear classifier based on
decision trees called random forest. To identify performance of the
classifiers and optimize the parameters, we used a nested leave-
one-participant-out cross-validation approach. Finally, since both
group representations come from both sessions of the same set of
subjects, the probability of detecting either condition by chance is
exactly 50%. To perform feature selection, we ranked the features
using two sample t-tests with samples of the training set as we
were measuring changes (as opposed to absolute values)
associated with drug effects. We report the cross-validation
performance obtained using the optimal set of features.

Multivariate analysis. As a post hoc analysis, we checked the
weights obtained by the best models generated for the different
classification tasks. Since the contribution of the most informative
features was evaluated in terms of weights assigned by the
classifier, this could only be achieved through the analysis of the
linear classifier: linear SVM. To be able to compare the weights
assigned across models, these were rescaled to the range of 0 to 1
by (1) taking their absolute values, and (2) dividing them by their
sum across all features. By doing so, we had the contribution of
each feature to the classification as a percentage value. To reduce
the complexity of this depiction, we only focus on the features
that had a relative contribution of more than 10%. It should be
noted that since these are the results of a cross-validated
approach, different sets of optimal are found across folds.

Validation. Models were estimated on the training dataset
(N= 31) described above. We then validated the models in two
independent datasets in which participants had also undergone
the Description task after MDMA (0.75, 1.5 mg/kg) and placebo.
The same set of features described above was extracted from
these independent datasets, with the exception of acoustic data,
which was not available due to lower quality audio recordings. In
addition, in one of these datasets (Independent Dataset 2; ID2),
the duration of the task was 10 instead of 5 min, so two
psycholinguistic features that vary with task duration (total word
count and number of ideas) were not considered for model
validation in ID2. Independent Dataset 1 (ID1) comprised data
from 36 healthy participants (18 females; age= 24.6 ± 4.7 years)

who completed a 3-session within-participants study, receiving
placebo, low dose MDMA (0.75 mg/kg) and MDMA (1.5 mg/kg).
Further details of the overall study from which ID1 was obtained
are described in a previous publication, which employed a word
count method to assay positive and negative words used in the
speech task [35]. The speech data in ID1 were collected 140min
after MDMA/placebo administration. ID2 was comprised of data
we previously analyzed for semantic and syntactic features of
speech [16]. This dataset is composed of speech data from 13
participants (4 females; overall age= 24.5 ± 5.4 years) who also
completed a within-participants study and received placebo and
MDMA (0.75, 1.5 mg/kg) across 3 sessions; details of this study
have previously been reported ([16, 36] participants also under-
went a methamphetamine session in ID2, however these data are
not included in this analysis). Speech data for ID2 were collected
130min post MDMA/placebo administration. Demographic infor-
mation of ID1 and ID2 is provided in Table 1. The only variable that
presents statistically significant differences between the train/
validation dataset and the independent datasets is race, showing
p-values of 4E–4 (train/validation set vs ID1) and 2E–2 (train/
validation set vs ID2) for the proportion of Caucasian individuals.

RESULTS
Condition-level comparisons
The top three features (identified by the lowest p-value) for each
of the four comparisons (e.g., MDMA 0.75 vs. placebo) by speech
task (i.e. Description and Monologue) are presented in Table 3. Ten
features were found to show statistically significant differences
across conditions after FDR correction. Acoustic features appear to
be more relevant to detect the effects of oxytocin. In addition,
different sets of relevant features were observed for the two
different speech tasks.

Partial correlations
Partial correlations were conducted to examine the relationships
between pairs of features that best differentiated conditions (see
Table 3). Figure 1a presents the structure and strength of partial
correlations among these features as a function of condition
(columns) and task type (rows), while Fig. 1b provides a
multidimensional mapping of the partial correlations shown in
Fig. 1a. Stronger associations were found when the subjects were

Table 3. Univariate analysis: features ranked using the p-value of Wilcoxon paired t-test.

Conditions Monologues feature name Description feature name

Acoustic Semantic Psycholinguistic Acoustic Semantic Psycholinguistic

MDMA 0.75 vs. PBO Pitcha Think* W-Empty F1b Sad* Density

Pitche Talk* Determiners Angle Happy W-Empty

MFCC #13b Feeling* Indefinites PauseDiste Confidence N-Nouns

MDMA 1.5 vs. PBO MFCC #12a Talk Frequency Angle Support Ideas*

F3e Love Determiners PauseDista Think Honores*

PauseDistg Peace Definites PauseDistb Love W – Total*

MDMA 0.75 vs. MDMA1.5 Pitcha Support Frequency PauseDista Sad W-Empty *

MFCC #4b Think Determiners PauseDistg Love W-Total

MFCC #12a Affect Density PauseDistb Rapport W-content

OT vs. PBO F2c* Emotion Density PauseDista Support Definites

F2b* Anxiety N-Nouns Shimmerh Peace Determiners

F2e Talk N-Verbs Unvoicedi Feeling W-empty

Notes: Sub-index in the name of the feature indicate the descriptor: (a) median, (b) IQR, (c) kurtosis, (d) skewness, (e) percentile 5th, (f ) percentile 50, (g)
percentile 95th, (h) local; (i) frames. W refers to number of words. * indicates that the test passed FDR correction. PBO= placebo; MDMA 0.75= 3,4-
methylenedioxymethamphetamine 0.75 mg/kg; MDMA 1.5= 3,4-methylenedioxymethamphetamine 1.5 mg/kg; OT= oxytocin 20 international units.

Detection of acute 3,4-methylenedioxymethamphetamine (MDMA) effects. . .
C Agurto et al.

5

Neuropsychopharmacology (2020) 0:1 – 10



under the influence of psychoactive drugs relative to placebo,
especially MDMA. The projection of the partial correlations in two
dimensions show that each speech task has roughly a different
location along one of the axis of this subspace, in this subspace
and that, regardless of the speech task, the increased dose of
MDMA can be detected by the second dimension in this subspace
(axis y in Fig. 1b).

Classification
The accuracy of the four binary classifications (cross-validated) in
the Monologue and Descriptions task are presented in Fig. 2.
Classification using acoustic features only is more accurate for the

Monologue than the Description task. Conversely, features
obtained from transcripts (semantic and psycholinguistic) were
more informative for the Descriptions task. The highest accuracy
observed was for classification of a low MDMA dose relative to
placebo, where features extracted from speech yielded accuracy
of up to 87 and 84% with feature selection for Monologue and
Description tasks, respectively. The entire set of features did not
always improve classification accuracy. Regarding the use of
classifiers, the most accurate classifications were obtained using
linear SVM, followed by Random Forest and Nearest Neighbors.
We implemented a binomial test to estimate significance of the
prediction accuracy.

Fig. 1 a Partial correlations between the statistically significant features found in Table 2 identified as a function of drug condition and task
(Monologue presented in the top row and Description in the bottom row). b Multidimensional scaling representation of the partial
correlations in Fig. 1a. Observe the horizontal axis differentiating the monologue and description task for each drug condition, and the vertical
axis differentiating low and high MDMA conditions for each task. Moreover, the dashed line contains exclusively all of the monologue tasks,
stressing the consistency of the representation with the experimental conditions.
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Multivariate analysis
Weight contributions in each of the linear optimal models is
shown in Fig. 3. Although linear SVM models achieved the highest
accuracy for only three out of the eight analyzed conditions (See
Fig. 2, combined features+ features selection), the accuracies of
all of the analyzed linear SVM models are good, with results in the
range of [71% 87%]. We observe that for the monologue task,
psycholinguistic features do not have any contribution to either of
the four classification tasks. However, for the description task,
psycholinguistic features appear to be relevant for three of the
four classification tasks. We also observe that most of the top
features reported in the univariate test (Table 3) are also relevant
for classification, except for MDMA 0.75 vs. PBO, in which anxiety
appears to have a predominant role relative to the semantic
features reported in Table 3.

Validation
The accuracy of the classifiers generated on the training data was
tested in two separate validation datasets (Description task only)
for three of the four conditions (Fig. 4). Accuracy values up to 92
and 66% were achieved for ID1 and ID2, respectively (chance=
50%) using models enriched with feature selection. We also
implemented a binomial test for significance; however, this is a
pessimistic measure of significance for a validation dataset that, as
is the case here, differs from the training dataset in several
experimental dimensions [37, 38]. Even with this conservative
approach, we observed discrimination accuracies significantly
higher than chance.

DISCUSSION
These analyses represent, to the best of our knowledge, the first
attempt to use a broad spectrum of speech characteristics to

assess acute mental state changes as a result of drug intoxication
in a laboratory setting. Previous studies investigating the acute
effects of drugs on speech have employed a range of different
analytic methods, including automated semantic and syntactic
analysis [16, 18], computerized word count methods [35], and
manual approaches (e.g. [39, 40]). The results presented here
suggest that a broad array of computer-extracted speech features,
including acoustic, semantic, and psycholinguistic variables, can
provide a more complete characterization of all speech changes
generated by the acute effects of MDMA and intranasal oxytocin
administration. Indeed, the complexity of these results highlights
both the richness of speech as a data source and the difficulty
inherent in identifying which features are most important in
relation to specific drug effects.
We found that (1) The top features identified in the analysis

were related to both the drug and the task employed (i.e.
whether it was a description elicited via questions from a
researcher or a monologue); (2) Within each drug condition,
associations (partial correlations) between speech variables varied
with the task; (3) Accuracy varied with drug, feature type, and task
type; (4) Higher dose of MDMA is not associated with higher
changes with respect to placebo; and (5) Combining features in
machine learning classifiers consistently yielded accuracy rates
higher than chance, including when tested in two independent
datasets. These data indicate that speech analysis shows promise
as an assay of acute drug effects, providing further proof-of-
concept evidence for computerized use of speech to measure
mental states in humans. For example, automated speech
analysis could potentially aid psychiatry to overcome the
limitations of traditional assessments, such as compensate for
the limited number of trained professionals to evaluate various
aspects of communication or aid them to monitor changes over
time [8].

Fig. 2 Classification accuracy by task, feature type, and binary condition comparison. The number of features obtained after feature
selection is specified at the top of each bar. The symbols at the bottom of the bar indicate with which algorithm the maximum accuracy was
achieved: o Linear SVM, * Random Forest, and+Nearest neighbors. The types of features are indicated as follows: A= Acoustic features only;
B= Semantic features only; C= Psycholinguistic/syntactic features only; D= Combined features. PBO= placebo; MDMA 0.75= 3,4-
methylenedioxymethamphetamine 0.75 mg/kg; MDMA 1.5= 3,4-methylenedioxymethamphetamine 1.5 mg/kg; OT= oxytocin 20 interna-
tional units. Letters underlined in black indicate that at least one of the models achieved classification higher than chance at p < 0.05,
underlined in red at p < 0.001.
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Several aspects of these results warrant comment. In condition-
wise comparisons, features differing between conditions varied
both with task and drug comparison. For example, in the oxytocin
vs. placebo comparison, the top features identified passed FDR
correction for the Monologue, but not the Description task. The
top acoustic features in the Monologue task across comparisons
were related to MFCCs and formants, which are known to reflect
affective states [41]. For example, mean MFCC values differentiate
between boredom and neutral emotions [42]. The position of the
formants in the vowel space has also been studied for emotion
recognition from speech [43], finding that formant frequency
values reflect speech valence. Specifically, positive emotions and
high arousal are associated with higher second formant (F2)
values, which we also observed under oxytocin compared to
placebo in the Monologue task. In fact, weight analysis revealed
that a very high accuracy was achieved with only F2 features (See
Fig. 3). Conversely, the top acoustic features in the Description
task were related to the duration of pauses during speech. This
difference may suggest that our hypothesis actually holds and the
presence of the research assistant during the Description task
prevented participants from expressing their emotions as freely as
they could in the Monologue. Alternatively, this may reflect the
different instructions given for each task. Either possibility

indicates that the optimal conditions for eliciting speech for the
purpose of automated speech analysis represent a critical factor in
need of further research.
We can provide an illustrative template for interpreting how the

mental states underlying the eight conditions (four drugs x two
tasks) determine interactions between speech components.
Figure 1a shows partial correlations between the most relevant
features identified. Across tasks, partial correlations were low, with
more pronounced strength in the active drug conditions. In these,
it is interesting to note that the only substantial link between an
acoustic feature (F2 kurtosis) and a linguistic feature (“feeling”) is
observed for the monologue with low dose MDMA. Similarly, the
description task with a high dose of MDMA is the only condition
that uncouples structural linguistic features (w-empty, w-total,
Honoré’s and ideas) from semantic features (“think”, “sad”, “talk”,
“feeling”). Further insights can be obtained by mapping the partial
correlation matrices onto a two-dimensional space using Multi-
dimensional Scaling (MDS), which arranges them according to
their similarity [44]. MDS (Fig. 1b) finds that the two main
dimensions of similarity are one that is determined by the task
(“monologue to description factor”), such that for each drug
condition description instance is to the right of monologue, and
another dimension that determines MDMA dose level, such that
for both tasks high MDMA is higher than low MDMA. Although the
effect of a higher doses of MDMA is in the same direction
regardless of the tasks, we observe that a higher dose of MDMA
does not yield to a higher distance from placebo, as we
hypothesized at the beginning of this work. This is also
corroborated by the performance of our models where a slightly
higher performance is obtained for MDMA 0.75 vs. placebo than
for MDMA 1.5 vs. placebo.
The overall accuracy of cross-validated classification, which was

higher than chance, was consistent with previous findings by our
group indicating that, at least in cross-validation, automated
speech analysis can contribute to higher-than-chance classifica-
tion between drug conditions [16]. Here, we extended significantly
on those findings to report that speech-based classifiers trained
on one dataset yield higher-than chance classification in
independent validation datasets (see Fig. 4). These results also,
however, highlighted the impact of methodological details, with
classification accuracy higher in Independent Dataset 2 relative to
Independent Dataset 1. One possible factor in this difference is
that the speech task in ID2 (130 min after dosing) was conducted
closer to peak drug effects and the time of the speech task in the
training dataset (between 75 and 105min) than that in ID1 (140
min after dosing). Another possible factor is that for ID1, there is a
statistically significant difference (p-value= 4E–4) with the train-
ing/validation dataset in terms of the proportion of Caucasian
participants. We speculate that different races, which may be
associated with different cultural backgrounds, could have an
effect in how people perform the description task that we were
not able to account for. This suggests a further axis of complexity
in characterizing drug effects via automated speech, with features
and classification accuracy varying along the time-course of drug
effects as well as with drug, dose, speech elicitation task, and
potentially race or ethnicity.
As a secondary analysis, this study has several limitations. First,

the three datasets employed for analyses were designed for other
studies [19, 36, 45, 46]. Moreover, subsets of the data have been
used in previous analyses of speech features [16, 18, 35]. However,
the current analyses significantly extended prior findings by: (1)
Including acoustic, semantic, and psycholinguistic features; and (2)
Training classifiers on one dataset and testing them on two
independent datasets. Second, because the original studies were
not designed for the present purpose, there were methodological
differences between studies including variation in the position of
the speech task in the drug time course, and differences in the
specific tasks used. While not optimal, this variability did point

Fig. 3 Weight representation of combined features found by
optimal linear classification models (2 tasks x 4 conditions).
Weights are normalized to represent the relevant contribution of
each feature as percentages. Two heatmaps are shown correspond-
ing to both speech tasks analyzed in this study (left: monologue,
right: description). Features that contributed less than 10% were not
displayed here. First letter in the feature name indicates the type of
feature: A= Acoustic, S= semantic, P= Psycholinguistic.
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towards important factors potentially influencing outcome for
further empirical investigation. Third, we only assessed a limited
number of drug conditions (two doses of MDMA, and one of
oxytocin for each participant). An obvious extension of these
findings would be to investigate the potential capacity of
computerized speech analysis to detect intoxication with more
commonly used drugs. This is particularly relevant for cannabis,
given that biochemical markers may not provide a reliable test of
impairment (rather than exposure), which is increasingly necessary
in the context of legalization of cannabis for medicinal and
recreational purposes [47, 48].
These findings contribute to a small but rapidly growing body

of literature suggesting that computerized speech analysis
methods may present a powerful, non-invasive, and cost-
effective way to capture clinically relevant mental states, including
those occurring during intoxication. Further work is needed to
refine these methods and reduce the complexity of speech data
mining into usable algorithms; in particular, larger and more
varied datasets would help considerably to identify which speech
markers are independent of the particular task and experimental
setting, and also allow for a systematic exploration of interpretable
data-driven markers [49]. However, these methods suggest that in
the near future, digital phenotyping, including automated speech
analysis, could provide reliable, objective information to comple-
ment existing methods used to understand human mental states.
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